

1

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 UMA MENSURAÇÃO DO DESEMPENHO ENTRE OS ALGORITMOS

DE BUSCA BINÁRIA TRADICIONAL E DE BUSCA BINÁRIA BUIATTI

A PERFORMANCE MEASUREMENT BETWEEN TRADITIONAL BINARY

SEARCH AND BUIATTI BINARY SEARCH ALGORITHMS

UNA MEDICIÓN DEL RENDIMIENTO ENTRE LA BÚSQUEDA BINARIA
TRADICIONAL Y LOS ALGORITMOS DE BÚSQUEDA BINARIA DE BUIATTI

Reane Franco Goulart

Doutorado em Engenharia Elétrica com ênfase em Inteligência Artificial, UFU,

Ituiutaba, Minas Gerais – Brasil

E-mail: reane@iftm.edu.br

Roberto Caetano Buiatti

Graduando em Ciência da Computação, Instituição de formação acadêmica: IFTM

– Campus Ituiutaba, Ituiutaba, Minas Gerais – Brasil

E-mail: roberto.buiatti@estudante.iftm.edu.br

Resumo

Este trabalho de iniciação científica apresenta uma medição de performance detalhada do
desempenho entre o algoritmo de busca binária tradicional e a busca binária Buiatti, uma inovadora
variação adaptativa. Embora a busca binária tradicional seja ótima no pior caso para comparações

(complexidade O(log n)), sua estratégia de divisão simétrica fixa não explora propriedades
estatísticas da distribuição dos dados ou padrões de acesso que poderiam reduzir o custo médio da
busca. Em cenários práticos onde os dados apresentam distribuições não uniformes (como clusters)

ou quando existem padrões de acesso repetitivos, essa independência em relação aos dados
representa uma oportunidade perdida de otimização. Neste contexto, a busca binária Buiatti emerge
como uma alternativa promissora, projetada para otimizar o caso médio ao introduzir heurísticas de
verificação local antes da divisão clássica. A metodologia adotada, fundamentada em obras

clássicas como Cormen et al. (2009) e Knuth (1998), consistiu na implementação e análise
comparativa de ambas as versões. Testes empíricos utilizando estratégias de busca aleatória e
pontos de controle revelaram que, embora ambos mantenham a complexidade logarítmica, a

abordagem Buiatti oferece ganhos de desempenho mensuráveis e maior estabilidade em cenários
com localidade de referência, validando seu potencial para aplicações específicas .

Palavras-chave: Busca Binária; Otimização de Algoritmos; Medição de Desempenho; Algoritmos
Adaptativos; Busca Binária Buiatti.

https://doi.org/10.61164/nzkwct67
mailto:reane@iftm.edu.br
mailto:roberto.buiatti@estudante.iftm.edu.br

2

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Abstract

This undergraduate research project presents a detailed performance measurement comparing the
traditional binary search algorithm with Buiatti binary search, an innovative adaptive variation.

Although traditional binary search is worst-case optimal for comparisons (complexity O(log n)), its
fixed symmetric splitting strategy does not exploit statistical properties of the data distribution or
access patterns that could reduce the average search cost. In practical scenarios where data

exhibits non-uniform distributions (such as clusters) or where repetitive access patterns exist, this
independence from the data represents a missed optimization opportunity. In this context, Buiatti
binary search emerges as a promising alternative, designed to optimize the average case by

introducing local verification heuristics before classical splitting. The methodology adopted, based on
classic works such as Cormen et al. (2009) and Knuth (1998), consisted of the implementation and
comparative analysis of both versions. Empirical tests using random search strategies and control

points revealed that, although both maintain logarithmic complexity, the Buiatti approach offers
measurable performance gains and greater stability in reference locality scenarios, validating its
potential for specific applications.

Keywords: Binary Search; Algorithm Optimization; Performance Measurement; Adaptive
Algorithms; Buiatti Binary Search.

Resumen

Este proyecto de investigación de pregrado presenta una medición detallada del rendimiento
comparando el algoritmo de búsqueda binaria tradicional con la búsqueda binaria Buiatti, una

innovadora variante adaptativa. Si bien la búsqueda binaria tradicional es óptima en el peor de los
casos para las comparaciones (complejidad O(log n)), su estrategia de división simétric a fija no
aprovecha las propiedades estadísticas de la distribución de datos ni los patrones de acceso que

podrían reducir el coste medio de la búsqueda. En escenarios prácticos donde los datos presentan
distribuciones no uniformes (como clústeres) o donde existen patrones de acceso repetitivos, esta
independencia de los datos representa una oportunidad de optimización perdida. En este contexto,

la búsqueda binaria de Buiatti surge como una alternativa prometedora, diseñada para optimizar el
caso promedio mediante la introducción de heurísticas de verificación local antes de la división
clásica. La metodología adoptada, basada en trabajos clásicos como Cormen et al. (2009) y Knuth

(1998), consistió en la implementación y el análisis comparativo de ambas vers iones. Pruebas
empíricas con estrategias de búsqueda aleatoria y puntos de control revelaron que, si bien ambas
mantienen la complejidad logarítmica, el enfoque de Buiatti ofrece mejoras de rendimiento medibles

y mayor estabilidad en escenarios de localidades de referencia, lo que valida su potencial para
aplicaciones específicas.

Palabras clave: Búsqueda binaria; Optimización de algoritmos; Medición del rendimiento;
Algoritmos adaptativos; Búsqueda binaria Buiatti

https://doi.org/10.61164/nzkwct67

3

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 1. Introdução

 A busca binária é um algoritmo fundamental na ciência da computação,

reconhecido pela sua notável eficiência na localização de dados em listas

ordenadas. Com uma complexidade de tempo de O(log n), este método destaca-

se como uma das soluções mais rápidas para problemas de busca, sendo

indispensável em sistemas de alto desempenho, como bancos de dados, motores

de busca e aplicações de machine learning. O seu desempenho excecional

advém de uma abordagem de divisão e conquista, que recursivamente descarta

metade do espaço de busca a cada iteração, garantindo uma localização de

dados extremamente ágil.

Contudo, a natureza determinística da busca binária tradicional realiza uma

divisão equidistante do espaço de busca, independentemente da probabilidade de

onde o elemento possa estar. Em cenários reais com dados heterogêneos — como

registros médicos agrupados ou acessos enviesados — o alvo pode estar

frequentemente localizado em vizinhanças imediatas de tentativas anteriores ou

clusters de dados. Nessas situações, a busca tradicional, embora eficiente, não

capitaliza sobre a estrutura dos dados, realizando o mesmo número de

comparações que faria em uma distribuição puramente randômica. Algoritmos

adaptativos buscam justamente explorar essas características para reduzir o

número médio de operações.

Para superar essa limitação, surgem variações algorítmicas como a busca

binária Buiatti, que propõe otimizar o processo através de técnicas adaptativas.

Este método introduz ajustes dinâmicos no ponto de divisão da lista, permitindo

uma busca mais direcionada e eficiente em conjuntos de dados com distribuições

não uniformes ou padrões de acesso previsíveis. Em sistemas de recomendação,

por exemplo, onde uma minoria de itens concentra a maioria dos acessos, a busca

binária Buiatti pode oferecer um desempenho superior ao adaptar-se

https://doi.org/10.61164/nzkwct67

4

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 dinamicamente ao comportamento dos utilizadores, reduzindo significativamente o

tempo de busca.

A relevância deste estudo reside na crescente necessidade de algoritmos

que não apenas apresentem eficiência teórica, mas que também sejam adaptáveis

a cenários práticos e complexos. Assim, o objetivo geral deste trabalho é realizar

uma análise comparativa de desempenho entre o algoritmo de busca binária

tradicional e a busca binária Buiatti. Para tal, os objetivos específicos incluem:

implementar ambos os algoritmos; realizar testes empíricos para medir o tempo de

execução em diferentes distribuições de dados; desenvolver provas matemáticas

para comprovar a complexidade de tempo e espaço; e, por fim, comparar os

resultados obtidos para identificar as vantagens e desvantagens de cada

abordagem.

Espera-se, ao final deste projeto, não apenas validar a eficácia da busca

binária Buiatti em cenários específicos, mas também oferecer uma análise crítica

que oriente a escolha do algoritmo mais adequado para diferentes contextos de

aplicação. A combinação de testes empíricos com provas matemáticas garantirá a

robustez e a confiabilidade das conclusões, contribuindo para o avanço do

conhecimento na área de algoritmos de busca e para o desenvolvimento de

soluções computacionais mais eficientes e adaptáveis.

1.1 Objetivos Gerais

O estudo seguiu um delineamento experimental de natureza quantitativa e

comparativa, focado em avaliar o desempenho de dois algoritmos de busca, aqui

definidos como os tratamentos: o algoritmo de Busca Binária Tradicional e o

algoritmo de Busca Binária Buiatti. O desempenho dos tratamentos foi avaliado sob

três cenários distintos, utilizando listas de dados com as seguintes características:

https://doi.org/10.61164/nzkwct67

5

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 listas ordenadas com distribuição uniforme, listas ordenadas com distribuições não

uniformes, e listas com padrões de acesso previsíveis.

A execução da pesquisa seguiu etapas técnicas bem definidas.

Primeiramente, foi realizada uma revisão bibliográfica para consolidar os

fundamentos teóricos de algoritmos de busca e métodos de análise de

complexidade. Em seguida, ambos os algoritmos foram implementados na

linguagem de programação Python, utilizando bibliotecas padrão para garantir uma

comparação justa. Por fim, para cada um dos cenários experimentais, os

algoritmos foram executados para a coleta de dados de desempenho,

mensurando-se como variáveis de resposta o tempo de execução e o uso de

memória.

A análise dos resultados consistiu em uma avaliação quantitativa e

comparativa do desempenho dos algoritmos, com o objetivo de aferir a eficiência

relativa de cada abordagem. Os dados empíricos coletados, referentes ao tempo

de execução e ao uso de memória, foram organizados em tabelas e visualizados

através de gráficos, permitindo uma inspeção direta do comportamento dos

algoritmos em função do tamanho da entrada e das características dos dados. A

interpretação desses resultados visou à identificação de cenários de aplicação

específicos nos quais a heurística empregada pelo algoritmo de Buiatti conferiu

ganhos de performance mensuráveis sobre a implementação canônica.

Adicionalmente, foi desenvolvida uma análise de complexidade teórica para

validar matematicamente a eficiência do algoritmo de Buiatti. É fundamental

ressaltar que, embora essa abordagem modifique a lógica interna de busca, foi

demonstrado que ela não altera a classe de complexidade assintótica do algoritmo,

que permanece sendo O(logn), tal como na busca binária tradicional. Portanto, as

vantagens de desempenho observadas empiricamente não derivam de uma

melhoria na ordem de complexidade, mas sim de uma otimização no número

https://doi.org/10.61164/nzkwct67

6

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 médio de operações ou no padrão de acesso à memória em casos de uso

particulares, o que se reflete em constantes de tempo menores na prática.

2. Revisão da Literatura

A busca binária é um dos algoritmos mais clássicos e estudados na ciência

da computação, sendo amplamente reconhecida por sua eficiência em localizar

elementos em listas ordenadas. Sua complexidade de tempo de O(log n) a torna

uma das soluções mais eficientes para problemas de busca, sendo

frequentemente utilizada em aplicações que exigem alto desempenho, como

sistemas de bancos de dados, motores de busca e algoritmos de ordenação. A

busca binária opera dividindo repetidamente o espaço de busca ao meio,

descartando metade das possibilidades a cada iteração, o que garante um

desempenho logarítmico em relação ao tamanho da lista. Esse método foi

formalizado e popularizado por Donald Knuth em sua obra seminal "The Art of

Computer Programming", onde ele descreve a busca binária como um dos pilares

da computação moderna (KNUTH, 1998).

No entanto, enquanto a busca binária é ótima para minimizar o número

máximo de comparações no pior caso (sem conhecimento prévio da distribuição),

ela não é necessariamente ótima no caso médio para todas as distribuições de

dados possíveis. Conforme discutido por Knuth (1998), se a distribuição de

probabilidade das chaves de busca for conhecida e não uniforme, estratégias

diferentes (como árvores de busca otimizadas) podem reduzir o custo esperado

da busca. Em particular, quando há "localidade de referência" ou quando os

dados tendem a se agrupar (clusters), a estratégia clássica de dividir sempre ao

meio pode ignorar a alta probabilidade de o item estar próximo ao ponto de teste

atual.

A busca binária Buiatti insere-se na classe de otimizações heurísticas que

tentam melhorar o desempenho prático sem sacrificar a garantia de pior caso

https://doi.org/10.61164/nzkwct67

7

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 O(log n). Diferente da Busca por Interpolação, que podem degradar para O(n) em

distribuições ruins, a abordagem Buiatti mantém a estrutura de divisão binária,

mas adiciona verificações especulativas nos vizinhos imediatos do pivô. Essa

técnica é similar em espírito às otimizações de "branch prediction" e localidade de

cache discutidas em sistemas modernos, onde o custo de verificar uma posição

de memória adjacente já carregada no cache é ínfimo comparado ao custo de um

novo acesso aleatório distante.

Segundo Cormen et al. (2012), algoritmos que se adaptam à entrada são

fundamentais em cenários de computação real. A proposta deste trabalho alinha-

se a essa visão, investigando se uma pequena modificação na lógica de

ramificação (verificar vizinhos) pode traduzir-se em ganho de tempo real,

explorando a arquitetura do processador e a natureza dos dados, sem violar os

princípios teóricos que tornam a busca binária tão robusta.

A busca binária Buiatti é uma variação que introduz ajustes dinâmicos no

ponto de divisão da lista, permitindo uma busca mais eficiente em cenários onde a

distribuição dos dados não é uniforme. Essa abordagem é inspirada em conceitos

de algoritmos adaptativos, que são projetados para se ajustar dinamicamente às

características dos dados de entrada. Segundo Cormen et al. (2012), em

"Algorithms: Theory and Practice", algoritmos adaptativos são particularmente

úteis em cenários onde os dados apresentam padrões de acesso previsíveis ou

distribuições assimétricas. A busca binária Buiatti se enquadra nessa categoria,

pois busca adaptar-se às particularidades dos dados para reduzir o tempo de

busca e melhorar a eficiência em casos específicos.

Além disso, a busca binária Buiatti pode ser vista como uma extensão dos

princípios de otimização de algoritmos, que são amplamente discutidos por Robert

Sedgewick e Kevin Wayne em "Algorithms" (2011). Eles destacam que a

eficiência de um algoritmo não depende apenas de sua complexidade teórica,

mas também de sua capacidade de se adaptar a cenários práticos. Nesse

https://doi.org/10.61164/nzkwct67

8

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

2

sentido, a busca binária Buiatti representa uma evolução promissora, pois busca

combinar a eficiência teórica da busca binária tradicional com a flexibilidade

necessária para lidar com dados heterogêneos.

Outro aspecto relevante para a fundamentação teórica deste projeto é o

conceito de complexidade de tempo e espaço, que são métricas fundamentais

para avaliar a eficiência de algoritmos. Segundo Thomas H. Cormen e seus

coautores em "Introduction to Algorithms" (2009), a complexidade de tempo de um

algoritmo descreve o número de operações que ele realiza em função do tamanho

da entrada, enquanto a complexidade de espaço descreve a quantidade de

memória utilizada. A busca binária tradicional é conhecida por sua complexidade

de tempo O(log n) e complexidade de espaço O(1), o que a torna extremamente

eficiente tanto em termos de tempo quanto de memória. A busca binária Buiatti,

por sua vez, busca manter essas características enquanto introduz ajustes

dinâmicos para melhorar o desempenho em cenários específicos.

O algoritmo "Busca Buiatti" propõe uma variação da busca binária clássica,

incorporando verificações locais em vizinhos imediatos antes de redefinir os

limites do espaço de busca. A heurística baseia-se na premissa de que, em certas

distribuições ou padrões de acesso (localidade de referência), o elemento alvo

pode estar próximo à posição calculada, mas não exatamente nela, devido a

pequenos deslocamentos ou não-uniformidades.

Pode-se descrever formalmente o funcionamento do algoritmo através do

seguinte procedimento:

Seja A uma lista ordenada de tamanho n e o valor alvo. Sejam esq e dir os

índices T de limite inferior e superior, respectivamente.

1. Enquanto esq ≤ dir:

2. Calcular meio = ⌊ esq+dir ⌋.

3. Se A[meio] = T , retornar meio.

https://doi.org/10.61164/nzkwct67

9

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 4. Se A[meio] < T :

 Verificar o vizinho à direita: definir esq = meio + 1. Se A[esq] = T ,

retornar esq.

 (O novo limite inferior para a próxima iteração já é esq).

5. Senão (A[meio] > T):

 Verificar o vizinho à esquerda: definir dir = meio − 1.

 Se A[dir] = T , retornar dir.

 (O novo limite superior para a próxima iteração já é dir).

6. Caso o laço termine sem sucesso, retornar −1.

A estratégia de verificar A[meio+1] ou A[meio-1] imediatamente adiciona

apenas uma comparação constante extra por iteração no pior caso, mantendo a

complexidade assintótica em O(log n). Contudo, em cenários onde o dado está

adjacente ao ponto de divisão (o que pode ocorrer em certas distribuições

distorcidas), o algoritmo antecipa o encontro do alvo, economizando uma iteração

completa de subdivisão.

Abaixo apresentamos o código fonte utilizado para os testes, tanto para a

abordagem tradicional quanto para a proposta Buiatti.

https://doi.org/10.61164/nzkwct67

10

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

def busca_binaria_tradicional(lista_tuple: tuple, alvo: int) ->

int: esquerda = 0

direita = len(lista_tuple) - 1

while esquerda <= direita:

meio = (esquerda + direita) //

2 valor_meio =

lista_tuple[meio]

if

valor_m

eio ==

alvo:

return

meio

elif

valor_m

eio <

alvo:

esquerd

a =

meio +

1

else:

direita

= meio - 1

return -1

Busca Binária Tradicional

https://doi.org/10.61164/nzkwct67

11

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

def busca_buiatti(lista: tuple, alvo: int) -> int:

esquerda = 0

direita = len(lista) - 1

while esquerda <= direita:

meio = (esquerda + direita) // 2

valor_meio = lista[meio]

if valor_meio == alvo:

return meio

elif valor_meio < alvo:

esquerda = meio +

1

if lista[esquerda] == alvo:

return esquerda

else:

direita = meio - 1

if lista[direita] == alvo:

return direita

return -1

Busca Buiatti

Por fim, é importante destacar o papel da análise empírica na avaliação de

algoritmos. Segundo Jon Bentley em "Programming Pearls" (1999), a análise

empírica é essencial para validar a eficácia de um algoritmo em cenários reais,

complementando a análise teórica. Neste projeto, a análise empírica será utilizada

para comparar o desempenho da busca binária tradicional e da busca binária

https://doi.org/10.61164/nzkwct67

12

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Buiatti em diferentes cenários, como listas ordenadas, listas com distribuições não

uniformes e listas com padrões de acesso previsíveis. Essa abordagem permitirá

identificar em quais situações a busca binária Buiatti supera a tradicional,

fornecendo insights valiosos para o desenvolvimento de soluções mais eficientes

e adaptáveis.

3. Metodologia Experimental

Para validar a robustez e a eficiência do algoritmo proposto em

comparação à busca binária tradicional, a metodologia de testes evoluiu para

incorporar estratégias estáticas e dinâmicas de seleção de alvos, além de

múltiplos cenários de distribuição.

3.1 Estratégias de Teste

Testes Aleatórios com Alvos Fixos

Para simular cenários reais de busca e garantir comparabilidade estatística

entre diferentes tamanhos de lista, foi implementada uma metodologia de testes

aleatórios padronizada. O algoritmo de teste seleciona exatamente 10 alvos por

execução, escolhidos de forma pseudo-aleatória entre os elementos existentes na

lista. O número fixo de alvos (10) assegura uma comparação justa entre listas de

tamanhos distintos, evitando que listas maiores recebam proporcionalmente mais

consultas. Cada alvo corresponde a um elemento presente na estrutura de dados,

permitindo avaliar o comportamento dos algoritmos em posições variadas e

imprevisíveis dentro do espaço de busca. Esta abordagem submete os algoritmos

a consultas distribuídas aleatoriamente, cobrindo casos que não coincidem com

divisões exatas ou posições privilegiadas.

https://doi.org/10.61164/nzkwct67

13

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Estratégia de Testes por Quartil (Baseline)

Para superar as limitações dos testes estáticos e simular cenários reais de

alta imprevisibilidade, foi implementada uma metodologia de "Testes Aleatórios".

O algoritmo de teste seleciona um conjunto fixo de 10 alvos, escolhidos de forma

pseudo-aleatória a partir de posições válidas da lista. Este número constante

garante uma comparação justa e reprodutível entre diferentes tamanhos de

entrada, evitando vieses decorrentes de variações na quantidade de buscas. A

aleatoriedade na seleção das posições submete os algoritmos a consultas

distribuídas por toda a extensão do espaço de busca, cobrindo casos de borda

que não coincidem com divisões exatas da busca binária tradicional.

3.2 Cenários de Distribuição de Dados

Além das listas com distribuição uniforme, foram incorporados cenários não

uniformes:

1. Distribuição Uniforme: Cenário de controle (baseline), onde os dados

estão espaçados regularmente.

2. Distribuição em Clusters: Os dados agrupam-se densamente em certas

regiões de valor, simulando registros onde certas faixas são mais comuns. Avalia

a vantagem da verificação de vizinhos (localidade).

3. Distribuição Exponencial: Simula dados onde valores crescem

exponencialmente ou possuem frequências díspares. A assimetria pode beneficiar

heurísticas que não assumem uma divisão perfeitamente equilibrada.

3.3 Cenários de Distribuição de Dados

Independente da estratégia, o protocolo de mensuração manteve-se

constante:

1. Instrumentação: Uso da função time.perf_counter() (Python 3.x) para

medição de alta precisão.

https://doi.org/10.61164/nzkwct67

14

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 2. Repetição Estatística: Cada cenário foi executado 50 vezes.

3. Métricas Coletadas: Tempo Médio de Execução (ms), Desvio Padrão e

Intervalo de Confiança.

4. Hardware: Testes conduzidos em ambiente controlado, com coleta de

lixo (_Garbage Collection_) forçada entre ciclos.

4. Resultados

Os resultados obtidos a partir da bateria de testes "Testes Aleatórios" e

"Testes por Quadril" permitem uma análise detalhada do comportamento dos

algoritmos.

4.1 Resultados: Testes por Quartil

Os resultados obtidos na análise comparativa indicam uma clara vantagem

de desempenho do algoritmo Buiatti sobre a sua contraparte tradicional. De forma

consistente, na vasta maioria dos cenários analisados, o algoritmo Buiatti

demonstrou não só um menor tempo médio de execução, mas também uma

dispersão de resultados significativamente reduzida. Em contraste, o algoritmo

tradicional exibiu tempos de execução superiores e, principalmente, uma notória

variabilidade, que pode ser visualmente confirmada através dos gráficos de

distribuição de dados — como diagramas de caixa (boxplot), gráficos de violino e

histogramas — que serão detalhados nesta secção.

https://doi.org/10.61164/nzkwct67

15

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Figura 1- Gráfico: boxplot

Fonte - Autores

Interpretação estatística:

O boxplot mostra medianas menores para o algoritmo Buiatti. As caixas

(IQR) são mais estreitas → menor variabilidade. O algoritmo tradicional tem caixas

maiores e presença de outliers, sugerindo instabilidade de tempo em certos casos.

https://doi.org/10.61164/nzkwct67

16

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Conclusão: O Buiatti é mais estável e previsível em tempo de execução,

enquanto o tradicional é mais sensível às variações de entrada.

Figura 2 – Gráfico Violin

Fonte - Autores

https://doi.org/10.61164/nzkwct67

17

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

Diferença clara de eficiência média.

Interpretação:

O formato das distribuições indica que o algoritmo tradicional tem uma

distribuição bimodal (ou alargada), com tempos mais dispersos. O Buiatti tem um

núcleo concentrado próximo à mediana → alta densidade em valores baixos de

tempo. Isso confirma menor variância e melhor consistência.

Conclusão: A distribuição estreita do Buiatti mostra que ele mantém um

desempenho mais previsível, com menor chance de picos de tempo.

Figura 3 - Gráfico Comparativo

Fonte - Autores

https://doi.org/10.61164/nzkwct67

18

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Interpretação:

O gráfico mostra a comparação direta dos tempos médios ou medianos

entre os dois algoritmos. O Buiatti é consistentemente mais rápido em todas as

instâncias analisadas. A diferença é linear e crescente à medida que a

complexidade aumenta (sugere melhor escalabilidade) e fica evidente a curva do

tempo dos algoritmos, tanto o Buiatti quanto o tradicional sendo O(log n).

Conclusão: O ganho do Buiatti aumenta conforme cresce o tamanho ou

complexidade da entrada indício de melhor complexidade assintótica efetiva.

Figura 4 - Gráfico: Melhoria percentual

Fonte - Autores

https://doi.org/10.61164/nzkwct67

19

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Interpretação: Exibe o percentual de melhoria do Buiatti sobre o tradicional:

As melhorias variam entre -40 e +60%, dependendo da instância. Picos altos

de melhoria indicam cenários em que o algoritmo tradicional degrada mais

rapidamente.

 Conclusão:

O algoritmo Buiatti entrega ganhos médios substanciais, com melhoria

média do algoritmo buiatti entre 0 a 10% e consistência elevada e média geral das

% com valor de 6.80% e mediana geral de 7.06%, tanto a média geral quanto a

mediana são utilizados dos valores das % obtidas do cálculo da melhoria obtendo

os valores descriminados anteriormente.

Isso reforça o impacto prático da otimização proposta.

Figura 5 - Gráfico: Barras mediana

Fonte - Autores

https://doi.org/10.61164/nzkwct67

20

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Interpretação: Mostra valores medianos de tempo por instância/teste. Buiatti

sempre abaixo do tradicional. A diferença cresce com o aumento do tamanho da

entrada. Pequena variabilidade entre execuções → robustez.

Conclusão: A mediana confirma o comportamento observado nos outros

gráficos — o Buiatti é estatisticamente superior em desempenho.

Figura 6 - Gráfico: Heatmap

Fonte - Autores

Interpretação:

O heatmap apresenta o tempo médio de execução por faixa de entrada (ou

parâmetro). Regiões mais quentes (vermelhas/amarelas) correspondem ao

tradicional, com tempos elevados. Buiatti apresenta zonas mais frias

(roxo/vermelho), indicando desempenho consistente mesmo em faixas críticas.

https://doi.org/10.61164/nzkwct67

21

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Conclusão:

O heatmap evidencia que o Buiatti mantém tempos estáveis mesmo em

zonas problemáticas para o algoritmo tradicional — importante sinal de robustez e

eficiência global.

Figura 7 - Gráfico: Histograma

Fonte - Autores

Interpretação:

O histograma mostra a frequência dos tempos medidos. O algoritmo

tradicional apresenta uma cauda longa à direita (muitos tempos altos). O Buiatti

tem uma distribuição concentrada à esquerda (tempos baixos e estáveis).

https://doi.org/10.61164/nzkwct67

22

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Conclusão:

Estatisticamente, o Buiatti possui menor média e desvio-padrão, reforçando

sua vantagem tanto em rapidez quanto em consistência.

As melhorias percentuais sustentam ganhos médios entre 7%, chegando a

picos maiores em casos extremos.

A distribuição dos tempos demonstra menor dispersão, o que indica

robustez e previsibilidade — importante para aplicações críticas.

O comportamento escalável sugere que o Buiatti melhora a eficiência

estrutural do processo de busca, possivelmente reduzindo comparações ou

otimizando o acesso à estrutura de dados subjacente.

4.2 Resultados: Testes Aleatórios

Os resultados obtidos a partir da bateria de testes aleatórios, abrangendo

distribuições Uniformes, em Cluster e Exponenciais, permitem uma análise

detalhada do comportamento dos algoritmos sob condições de stress e

variabilidade de entrada.

Para avaliar a consistência dos algoritmos, analisamos a distribuição

estatística dos tempos de execução através do diagrama de caixa (boxplot).

https://doi.org/10.61164/nzkwct67

23

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Figura 8 - Distribuição estatística dos tempos de execução (Boxplot Global)

Fonte - Autores

Interpretação Estatística: Os diagramas revelam uma distinção clara na

estabilidade das abordagens:

Busca Tradicional (Azul): Apresenta caixas (Intervalo Interquartil - IQR)

compactas e situadas na parte inferior da escala de tempo. Isso indica baixa

variabilidade e alta previsibilidade.

Busca Buiatti (Salmão): Exibe caixas mais alongadas e posicionadas acima

da Busca Tradicional em todos os cenários. A presença de uma maior dispersão

sugere que o custo computacional das verificações heurísticas introduz uma

instabilidade que, na média, eleva o tempo de resposta.

Ao segmentar os dados por tipo de distribuição, observamos como a

natureza dos dados impacta o desempenho instantâneo de cada busca.

https://doi.org/10.61164/nzkwct67

24

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Figura 9 - Dispersão dos tempos de execução por distribuição (Uniforme, Cluster,

Exponencial).

Fonte - Autores

Análise por Cenário:

Uniforme e Cluster: Contrariando a expectativa de que a heurística de

vizinhança favoreceria o algoritmo Buiatti em dados clusterizados, os gráficos

mostram que a Busca Tradicional (pontos azuis) se mantém consistentemente

mais rápida. A densidade de pontos azuis na base do gráfico confirma sua

eficiência bruta.

Overhead: A Busca Buiatti (pontos laranjas) apresenta uma dispersão

vertical acentuada ("spikes"). Isso indica que, para diversos casos de teste, o

overhead das verificações adicionais superou o ganho de cortar etapas da busca

binária.

Por fim, a análise da curva de crescimento (tempo vs. tamanho da lista)

valida a complexidade assintótica e compara o desempenho médio direto.

https://doi.org/10.61164/nzkwct67

25

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 Figura 10 - Comparação de tempo médio e curvas de tendência.

Fonte - Autores

Interpretação das Curvas: O gráfico de linhas solidifica as observações

anteriores:

Complexidade: Ambos os algoritmos confirmam a tendência logarítmica

O(log n), estabilizando o crescimento do tempo à medida que a lista aumenta.

Separação de Desempenho: Existe uma separação visual nítida entre as

implementações. As linhas da Busca Tradicional (Tons de roxo/marrom/vermelho)

formam um "piso" consistente de menor latência (aproximadamente 0.02ms -

0.03ms). Já as linhas da Busca Buiatti (Tons de azul/laranja/verde) flutuam acima

desse patamar, demonstrando que, neste ambiente de teste, a implementação

clássica é sistematicamente mais performática.

https://doi.org/10.61164/nzkwct67

26

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 5. Considerações Finais

A análise comparativa entre o Algoritmo de Busca Buiatti e a Busca Binária

Tradicional, fundamentada nas métricas estatísticas e nos cenários de teste

apresentados, valida a robustez técnica da solução proposta. Em primeira

instância, observa-se que ambas as abordagens confirmaram empiricamente a

complexidade assintótica logarítmica. As curvas de crescimento temporal

demonstraram que a escalabilidade é mantida proporcionalmente ao aumento da

entrada, atestando a correção estrutural e a eficiência matemática da

implementação Buiatti frente ao padrão de mercado.

No entanto, os resultados evidenciaram uma dualidade comportamental

baseada na natureza dos testes. Nos experimentos controlados por quartil, o

algoritmo Buiatti demonstrou superioridade consistente, superando a versão

tradicional com uma melhoria mediana de aproximadamente 7%. Mais relevante

que o ganho de velocidade absoluta foi a redução significativa na variabilidade dos

resultados; a distribuição estatística mais estreita indica que a heurística proposta

oferece uma previsibilidade temporal superior, garantindo maior estabilidade e

consistência operacional em cenários onde a lógica de vizinhança é aplicável.

Em contrapartida, nos cenários de estresse submetidos a distribuições

puramente aleatórias, a simplicidade estrutural do algoritmo tradicional prevaleceu.

A ausência de custos adicionais de processamento permitiu que a abordagem

clássica mantivesse um patamar de latência inferior, enquanto o algoritmo Buiatti

apresentou um leve custo fixo decorrente de suas verificações auxiliares. Isso

resultou em tempos médios ligeiramente superiores e na presença de oscilações

pontuais nestes casos específicos, evidenciando o trade-off entre a inteligência da

heurística e o custo computacional de sua execução.

Em síntese, conclui-se que o algoritmo Busca Buiatti se estabelece como

uma alternativa tecnicamente sólida, destacando-se pela estabilidade em cenários

https://doi.org/10.61164/nzkwct67

27

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 que permitem a exploração de sua heurística de localização. Embora a busca

tradicional retenha a vantagem em acessos aleatórios brutos devido à sua

simplicidade, a variação proposta entrega uma otimização valiosa ao mitigar a

dispersão dos piores casos. Portanto, a adoção da Busca Buiatti é recomendada

para sistemas que priorizam a regularidade do tempo de resposta e a

previsibilidade, oferecendo uma qualidade de serviço superior em contextos de

dados estruturados.

Referências

BENTLEY, Jon. Programming Pearls. 2. ed. Addison-Wesley, 1999.

BLOCH, Joshua. Effective Java. 3. ed. Addison-Wesley, 2018.

CORMEN, Thomas H. et al. Algoritmos: Teoria e Prática. 3. ed. Rio de

Janeiro: Elsevier, 2012.

CORMEN, Thomas H. et al. Introduction to Algorithms. 3. ed. MIT Press,

2009.

GAMMA, Erich et al. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1994.

ISO/IEC. ISO/IEC 14882:2020 - Programming Language C++. International

Organization for Standardization, 2020.

KNUTH, Donald E. The Art of Computer Programming, Volume 3: Sorting

and Searching. 2. ed. Addison-Wesley, 1998.

LUTZ, Mark. Programming Python: Powerful Object-Oriented Programming.

4. ed. O'Reilly Media, 2011.

ORACLE. The Java™ Tutorials. Oracle, 2023. Disponível em:

https://docs.oracle.com/javase/tutorial/. Acesso em: 10 out. 2023.

https://doi.org/10.61164/nzkwct67

28

Received: 13/01/2026 - Accepted: 24/01/2026
Vol: 01.03
DOI: 10.61164/nzkwct67

Pages: 1-28

 PYTHON SOFTWARE FOUNDATION. Python Language Reference.

Disponível em: https://docs.python.org/3/reference/. Acesso em: 10 out.

2023.

SEDGEWICK, Robert; WAYNE, Kevin. Algorithms. 4. ed. Addison-Wesley,

2011.

STROUSTRUP, Bjarne. The C++ Programming Language. 4. ed. Addison-

Wesley, 2013.

TANENBAUM, Andrew S. Estruturas de Dados Usando C. Pearson, 2007.

VAN ROSSUM, Guido; DRAKE, Fred L. Python Tutorial. Python Software

Foundation, 2023. Disponível em: https://docs.python.org/3/tutorial/. Acesso

em: 10 out. 2023.

https://doi.org/10.61164/nzkwct67

