USO DE RESÍDUOS DE BORRACHA DE PNEUS PARA PRODUÇÃO DE CONCRETO EMBORRACHADO: UMA REVISÃO

Authors

  • Geisa do Nascimento Frota Universidade Estadual Vale do Acaraú
  • Francisco Gustavo Moreira Universidade Estadual Vale do Acaraú
  • Aldecira Gadelha Diogenes Universidade Estadual Vale do Acaraú

DOI:

https://doi.org/10.61164/rmnm.v9i1.2731

Keywords:

Waste, Rubberised Concrete, Aggregates, Properties

Abstract

This work aimed to carry out a prospective study on rubberised concrete using tire rubber waste to partially replace fine and/or coarse aggregates. The present study was carried out through a literature review of articles and patents published until December 2023. The search for articles was conducted on the Scopus, Web of Science and Scielo platforms, and for patents at the National Institute of Industrial Property (INPI) of Brazil, Public Patents of Latin America and Spain (LATIPAT), Espacenet, and Patentscope. The keywords used in the research were: concrete, tire, rubber, waste and rubberised concrete, as well as their translations into Portuguese. Based on the results obtained from the databases of scientific articles and patents, a thorough analysis of documents relevant to the proposed topic was carried out and resulted in 52 articles and no patents. According to the articles found, the application of tire rubber does not show promising results in the mechanical, physical and rheological properties of rubberised concrete, but the use of this residue is an attempt to contribute to environmental sustainability.

References

ALSAIF, A; BERNAL, S. A; GUADAGNINI, M; PILAKOUTAS, K. Durability of steel fibre reinforced rubberised concrete exposed to chlorides, Construction and Building Materials, v. 188, pp. 130-142, Nov. 2018b. DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.122

ALSAIF, A; BERNAL, S. A; GUADAGNINI, M; PILAKOUTAS, K. Freeze-thaw resistance of steel fibre reinforced rubberised concrete, Construction and Building Materials, v. 195, pp. 450-458, Jan. 2019a. DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.103

ALSAIF, A; GARCIA, R; FIGUEIREDO, F. P; NEOCLEOUS, K; CHRISTOFE, A; GUADAGNINI, M; PILAKOUTAS, K. Fatigue performance of flexible steel fibre reinforced rubberised concrete pavements, Engineering Structures, v. 193, pp. 170-183, Aug. 2019b. DOI: https://doi.org/10.1016/j.engstruct.2019.05.040

ALSAIF, A; KOUTAS, L; BERNAL, S. A; GUADAGNINI, M; PILAKOUTAS, K. Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements, Construction and Building Materials, v. 172, pp. 533-543, May. 2018a. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.010

ALSHAIKH, I. M. H; BAKAR, B. H. A; ALWESABI, E. A. H; AKIL, H. M. Progressive collapse of reinforced rubberised concrete: Experimental study, Construction and Building Materials, v. 226, pp. 307-316, Nov. 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.270

ASLANI, F; MA, G; WAN, D. L. Y; LE, V. X. T. Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete, Journal of Cleaner Production, v. 172, pp. 1835-1847, Jan. 2018. DOI: https://doi.org/10.1016/j.jclepro.2017.12.003

AYUB, T; KHAN, S. U; MAHMOOD, W. Mechanical Properties of Self-Compacting Rubberised Concrete (SCRC) Containing Polyethylene Terephthalate (PET) Fibres, Iranian Journal of Science and Technology, Transactions of Civil Engineering, v. 46, pp. 1073-1085, 2022. DOI: https://doi.org/10.1007/s40996-020-00568-6

BOMPA, D. V; ELGHAZOULI, A. Y. Creep properties of recycled tyre rubber concrete, Construction and Building Materials, v. 209, pp. 126-134, Jun. 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.127

BOMPA, D. V; ELGHAZOULI, A. Y. Stress-strain response and practical design expressions for FRP-confined recycled tyre rubber concrete, Construction and Building Materials, v. 237, pp. 117633, Mar. 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117633

BOMPA, D. V; ELGHAZOULLI, A. Y. Bond-slip response of deformed bars in rubberised concrete, Construction and Building Materials, v. 154, pp. 884-898, Nov. 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.08.016

CHU, L; WANG, S; LI, D; ZHAO, J; MA, X. Cyclic behaviour of beam-column joints made of crumb rubberised concrete (CRC) and traditional concrete (TC), Case Studies in Construction Materials, v. 16, pp. e00867, Jun. 2022. DOI: https://doi.org/10.1016/j.cscm.2021.e00867

CINTRA, C. L. D; PAIVA, A. E. M; BALDO, J. B. Argamassas de revestimento para alvenaria contendo vermiculita expandida e agregados de borracha reciclada de pneus - Propriedades relevantes, Cerâmica, São Paulo, v. 60, pp. 69-76, Mar. 2014. DOI: https://doi.org/10.1590/S0366-69132014000100010

DONG, M; ELCHALAKANI, M; KARRECH, A; FAWZIA, S; ALI, M. S. M; YANG, B; XU, S. Q. Circular steel tubes filled with rubberised concrete under combined loading, Journal of Constructional Steel Research, v. 162, pp. 105613, Nov. 2019a. DOI: https://doi.org/10.1016/j.jcsr.2019.05.003

DONG, M; ELCHALAKANI, M; KARRECH, A; HASSANEIN, M. F; XIE, T; YANG, B. Behaviour and design of rubberised concrete filled steel tubes under combined loading conditions, Thin-Walled Structures, v. 139, pp. 24-38, Jun. 2019b. DOI: https://doi.org/10.1016/j.tws.2019.02.031

DONGA, P. D; SHAH, D; BHAVSAR, J. K. Impact Resistance of Waste Rubber Fiber Silica Fume Concrete, Journal of Civil Engineering and Environmental Technology, v. 3, n. 4, pp. 274-279, Jan-Mar. 2016.

DUARTE, A. P. C; SILVA, B. A; SILVESTRE, N; BRITO, J; JÚLIO, E; CASTRO, J. M. Tests and design of short steel tubes filled with rubberised concrete, Engineering Structures, v. 112, pp. 274-286, Apr. 2016. DOI: https://doi.org/10.1016/j.engstruct.2016.01.018

ELCHALAKANI, M; HASSANEIN, M. F; KARRECH, A; FAWZIA, S; YANG, B; PATEL, V. I. Experimental testes and design of rubberised concrete-filled double skin circular tubular short columns, Structures, v. 15, pp. 196-210, Aug. 2018b. DOI: https://doi.org/10.1016/j.istruc.2018.07.004

ELCHALAKANI, M; HASSANEIN, M. F; KARRECH, A; YANG, B. Experimental investigation of rubberised concrete-filled double skin square tubular columns under axial compression, Engineering Structures, v. 171, pp. 730-746, Sep. 2018a. DOI: https://doi.org/10.1016/j.engstruct.2018.05.123

ELGHAZOULI, A. Y; BOMPA, D. V; XU, B; TERAN, A. M. R; STAFFORD, P. J. Performance of rubberised reinforced concrete members under cyclic loading, Engineering Structures, v. 166, pp. 526-545, Jul. 2018. DOI: https://doi.org/10.1016/j.engstruct.2018.03.090

ELSAYED, M; TAYEH, B. A; KAMAL, D. Effect of crumb rubber on the punching shear behaviour of reinforced concrete slabs with openings, Construction and Building Materials, v. 311, pp. 125345, Oct. 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125345

ELSAYED, M; TAYEH, B. A; MOHAMED, M; ELYMANY, M; MANSI, A. H. Punching shear behaviour of RC flat slabs incorporating recycled coarse aggregates and crumb rubber, Journal of Building Engineering, v. 44, pp. 103363, Jul. 2021. DOI: https://doi.org/10.1016/j.jobe.2021.103363

FENG, W; TANG, Y; HE, W; WEI, W; YANG, Y. Mode I dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar, Journal of Building Engineering, v. 48, pp. 0-15, Jan. 2022. DOI: https://doi.org/10.1016/j.jobe.2022.103995

GOUVEIA, N., Resíduos sólidos urbanos: impactos socioambientais e perspectiva de manejo sustentável com inclusão social, Ciência & Saúde Coletiva, v. 17, n. 6, pp.1503- 1510, Jun. 2012. DOI: https://doi.org/10.1590/S1413-81232012000600014

GUPTA, T; PATEL, K. A; SIDDIQUE, S; SHARMA, R. K; CHAUDHARY, S. Prediction of Mechanical Properties of Rubberised Concrete Exposed to Elevated Temperature Using ANN, Measurement, v. 147, pp. 106870, Dec. 2019. DOI: https://doi.org/10.1016/j.measurement.2019.106870

HALL, M. R; NAJIM, K. B. Structural behaviour and durability of steel-reinforced structural Plain/Self-Compacting Rubberised Concrete (PRC/SCRC), Construction and Building Materials, v. 73, pp. 490-497, Dec. 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.063

HALL, M. R; NAJIM, K. B; HOPFE, C. J. Transient thermal behaviour of crumb rubber-modified concrete and implications for thermal response and energy efficiency in buildings, Applied Thermal Engineering, v. 33-34, pp. 77-85, Feb. 2012. DOI: https://doi.org/10.1016/j.applthermaleng.2011.09.015

HARON, Z; JUSLI, E; NOR, H. M; JAYA, R. P; YAACOB, H; YAHYA, K; MOHAMAD, A; YAHYA, M. N. Prediction of Sound Absorption Coefficient for Double Layer Rubberised Concrete Blocks, International Journal of Engineering & Technology, v. 7, pp. 704-710, 2018. DOI: https://doi.org/10.14419/ijet.v7i2.29.14002

KARUNARATHNA, S; LINFORTH, S; KASHANI, A; LIU, X; NGO, T. Effect of recycled rubber aggregate size on fracture and other mechanical properties of structural concrete, Journal of Cleaner Production, v. 314, pp. 128230, July. 2021. DOI: https://doi.org/10.1016/j.jclepro.2021.128230

KURZ, M. N; BRANDELLI, T. M; PALIGA, C. M; TORRES, A. S. A potencialidade do uso de resíduo de borracha de pneu em argamassa: análise das propriedades físicas e mecânicas, Revista Matéria, Rio de Janeiro, v. 23, n. 3, Oct. 2018. DOI: https://doi.org/10.1590/s1517-707620180003.0488

MAVROULIDOU, M; FIGUEIREDO, J. Discarded tyre rubber as concrete aggregate: A possible outlet for used tyres, Global NEST Journal, v. 12, n. 4, pp. 359-367, 2010. DOI: https://doi.org/10.30955/gnj.000617

MEHTA, P. K; MONTEIRO, P. J. M. Concreto: Microestrutura, propriedades e materiais. 3ª ed., São Paulo, IBRACON, 2008.

MISHRA, M; PANDA, K. C. Influence of Rubber on Mechanical Properties of Conventional and Self Compacting Concrete, Advances in Structural Engineering, pp. 1785-1794, 2015. DOI: https://doi.org/10.1007/978-81-322-2187-6_136

MOHAMMADI, I; KHABBAZ, H. Shrinkage performance of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements, Cement & Concrete Composites, v. 62, pp. 106-116, Sep. 2015. DOI: https://doi.org/10.1016/j.cemconcomp.2015.02.010

MOHAMMADI, I; KHABBAZ, H; VESSALAS, K. Enhancing mechanical performance of rubberised concrete pavements with sodium hydroxide treatment, Materials and Structures, v. 49, pp. 813-827, 2016. DOI: https://doi.org/10.1617/s11527-015-0540-7

MOHAMMADI, I; KHABBAZ, H; VESSALAS, K. In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements, Construction and Building Materials, v. 71, pp. 456-471, Nov. 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.085

MUJDECI, A; BOMPA, D. V; ELGHAZOULI, A. Y. Confinement effects for rubberised concrete in tubular steel cross-sections under combined loading, Archives of Civil and Mechanical Engineering, v. 21, n. 2, pp. 1-20, 2021. DOI: https://doi.org/10.1007/s43452-021-00204-8

OTIENO, M; MUSHUNJE, K. Creep deformation characteristics of rubberised structural concrete, Construction and Building Materials, v. 312, pp. 125418, Oct. 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125418

PANDA, K. C; PARHI, P. S; JENA, T. Scrap-Tyre-Rubber Replacement for Aggregate in Cement Concrete: Experimental Study, International Journal of Earth Sciences and Engineering, v. 5, n. 6, pp. 1692-1701, Dec. 2012.

PCZIECZEK, A; EFFTING, C; GOMES, I. R; SCHACKOW, A; HENNING, E. Análise estatística de propriedades mecânicas de argamassas com cinza volante e resíduo de borracha de pneus, IBRACON de Estruturas e Materiais, São Paulo, v. 12, n. 4, pp. 790– 811, Aug. 2019. DOI: https://doi.org/10.1590/s1983-41952019000400005

PEREIRA, R. R; PAULA, H. M; BONFIM, W. B; SILVA, I. A. C; PINTO, H. S. D. Reciclagem de borracha de pneu e resíduo de concreteira na produção de tijolos de concreto: dosagem e otimização, Revista Matéria, Rio de Janeiro, v. 26, n. 3, Jan. 2021. DOI: https://doi.org/10.1590/s1517-707620210003.13027

POLYDOROU, T; CONSTANTINIDES, G; NEOCLEOUS, K; KYRIAKIDES, N; KOUTSOKERAS, L; CHRYSOSTOMOU, C; HADJIMITSIS, D. Effects of pre-treatment using waste quarry dust on the adherence of recycled tyre rubber particles to cementitious paste in rubberised concrete, Construction and Building Materials, v. 254, pp. 119325, Sep. 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119325

POLYDOROU, T; NEOCLEOUS, K; ILLAMPAS, R; KYRIAKIDES, N; ALSAIF, A; CHRYSOSTOMOU, C; PILAKOUTAS, K; HADJIMITSIS, D. Steel fibre-reinforced rubberised concrete barriers as forgiving infrastructure, In: THE INTERNATIONAL FEDERATION FOR STRUCTURAL CONCRETE 5TH INTERNATIONAL FIB CONGRESS, Oct. 2018, Melbourne, Austrália.

RAFFOUL, S; GARCIA, R; MARGARIT, D. E; GUADAGNINI, M; HAJIRASOULIHA, I; PILAKOUTAS, K. Behaviour of unconfined and FRP-confined rubberised concrete in axial compression, Construction and Building Materials, v. 147, pp. 388-397, Aug. 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.175

RAFFOUL, S; GARCIA, R; PILAKOUTAS, K; GUADAGNINI, M; MEDINA, N. F. Optimisation of rubberised concrete with high rubber content: An experimental investigation, Construction and Building Materials, v. 124, pp. 391-404, Oct. 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2016.07.054

SGOBBA, S; BORSA, M; MOLFETTA, M; MARANO, G. C. Mechanical performance and medium-term degradation of rubberised concrete, Construction and Building Materials, v. 98, pp. 820-831, Nov. 2015. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.095

SILVA, A. S; NACIF, G. C. L; PANZERA, T. H2; CHRISTOFORO, A. L; BATISTA, F. B; MANO, V. Incorporação de resíduos de borracha em compósitos de matriz polimérica termorrígida, Revista Matéria, Rio de Janeiro, v. 17, n.4, pp. 1158-1165, Mar. 2012. DOI: https://doi.org/10.1590/S1517-70762012000400006

SILVA, F. M; VAZ, V. V; BARBOSA, L. A. G; LINTZ, R. C. C. Avaliação da resistência mecânica de pisos intertravados de concreto sustentáveis (PICS), Revista Matéria, Rio de Janeiro, v. 22, n. 1, Jun. 2017a. DOI: https://doi.org/10.1590/s1517-707620170001.0110

SILVA, T. D; PAULA, H. M; SILVA, D; CARVALHO, I. M; FONTE, J. T; PEREIRA, R. R. Uso de granulado de borracha em substituição parcial ao agregado miúdo na produção de tijolos ecológicos, Revista Matéria, Rio de Janeiro, v. 22, n. 4, Oct. 2017b. DOI: https://doi.org/10.1590/s1517-707620170004.0239

SILVA, L. S; MOUTA, J. R; COSTA, M. C. B; GOMES, L. G. Concreto com borracha de recauchutagem de pneu para uso em pavimentação de baixo tráfego, Revista Matéria, Rio de Janeiro, v. 24, n. 2, Jun. 2019. DOI: https://doi.org/10.1590/s1517-707620190002.0676

SILVEIRA, P. M; ALBUQUERQUE, M. C. F; CASSOLA, S; BORTOLUCCI, A. A; PAULLI, L. D; VILLA, F. M. D. Estudo do comportamento mecânico do concreto com borracha de pneu, Revista Matéria, Rio de Janeiro, v. 21, n. 2, pp. 416-428, Jun. 2016. DOI: https://doi.org/10.1590/S1517-707620160002.0039

SINKHONDE, D; ONCHIRI, R. O; OYAWA, W. O; MWERO, J. N. Response surface methodology-based optimisation of cost and compressive strength of rubberised concrete incorporating burnt clay brick powder, Heliyon, v. 7, n. 12, pp. e08565, Dec. 2021a. DOI: https://doi.org/10.1016/j.heliyon.2021.e08565

SINKHONDE, D; ONCHIRI, R. O; OYAWA, W. O; MWERO, J. N. Ductility performance of reinforced rubberised concrete beams incorporating burnt clay powder, Heliyon, v. 7, n. 11, pp. e08310, Nov. 2021b. DOI: https://doi.org/10.1016/j.heliyon.2021.e08310

VALIZADEH, A; HAMIDI, F; ASLANI, F; SHAIKH, F. U. A. The effect of specimen geometry on the compressive and tensile strengths of self-compacting rubberised concrete containing waste rubber granules, Structures, v. 27, pp. 1646-1659, Oct. 2020. DOI: https://doi.org/10.1016/j.istruc.2020.07.069

WANG, T. A; LEE, D; CHOU, Y. T. Flexural and compressive behaviours of sustainable AC/RC composite system with various supplementary materials, International Journal of Pavement Engineering, v. 23, n. 9, pp. 2922- 2936, 2022. DOI: https://doi.org/10.1080/10298436.2021.1873335

WANG, Z; HAJIRASOULIHA, I; GUADAGNINI, M; PILAKOUTAS, K. Axial behaviour of FRP-confined rubberised concrete: An experimental investigation, Construction and Building Materials, v. 267, pp. 121023, Jan. 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121023

WANG, Z; HU, H; HAJIRASOULIHA, I; GUADAGNINI, M; PILAKOUTAS, K. Tensile stress-strain characteristics of rubberised concrete from flexural tests, Construction and Building Materials, v. 236, pp. 117591, Mar. 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117591

WERDINE, D; OLIVER, G. A; ALMEIDA, F. A; NORONHA, M. L; GOMES, G. F. Analysis of the properties of the self-compacting concrete mixed with tire rubber waste based on design of experiments, Structures, v. 33, pp. 3461–3474, Oct. 2021. DOI: https://doi.org/10.1016/j.istruc.2021.06.076

XU, B; BOMPA, D. V; ELGHAZOULI, A. Y; TERAN, A. M. R; STAFFORD, P. J. Behaviour of rubberised concrete members in asymmetric shear tests, Construction and Building Materials, v. 159, pp. 361-375, Jan. 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.091

XU, B; BOMPA, D. V; ELGHAZOULI, A.Y. Cyclic stress-strain rate-dependent response of rubberised concrete, Construction and Building Materials, v. 254, pp. 119253, Sep. 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119253

YI, O; MILLS, J. E; ZHUGE, Y; MA, X; GRAVINA, R. J; YOUSSF, O. Case study of the structural performance of composite slabs with low strength CRC delivered by concrete truck, Case Studies in Construction Materials, v. 13, pp. e00453, Dec. 2020. DOI: https://doi.org/10.1016/j.cscm.2020.e00453

YOUSSF, O; HASSANLI, R; MILLS, J. E; SKINNER, W; MA, X; ZHUGE, Y; ROYCHAND, R; GRAVINA, R. Influence of Mixing Procedures, Rubber Treatment, and Fibre Additives on Rubcrete Performance, Journal of Composites Science, v. 3, 2019. DOI: https://doi.org/10.3390/jcs3020041

ZHU, X; CHEN, X; LIU, S; LI, S; XUAN, W; CHEN, Y. Experimental study on flexural fatigue performance of rubberised concrete for pavement, International Journal of Pavement Engineering, v. 21, n. 9, pp. 1135- 1146, 2020. DOI: https://doi.org/10.1080/10298436.2018.1521971

Published

2024-09-30

How to Cite

USO DE RESÍDUOS DE BORRACHA DE PNEUS PARA PRODUÇÃO DE CONCRETO EMBORRACHADO: UMA REVISÃO. (2024). Revista Multidisciplinar Do Nordeste Mineiro, 9(1). https://doi.org/10.61164/rmnm.v9i1.2731