COMPUTATIONAL INSIGHTS INTO THE ESTERIFICATION OF LAURIC ACID (C12) WITH α-BISABOLOL OVER CeO2 AS A HETEROGENEOUS CATALYST

Authors

DOI:

https://doi.org/10.61164/jzjcha21

Keywords:

Esterification, Heterogeneous catalysis, Lauric acid (C12), α-bisabolol alcohol, Computational chemistry

Abstract

In this work, we conducted a theoretical investigation of the esterification of lauric acid (C12) with the natural unsaturated alcohol (-)-α-bisabolol, considering both uncatalyzed and CeO2-catalyzed pathways. Molecular structures were optimized using a combination of semi-empirical methods and Density Functional Theory (DFT), enabling the calculation of key parameters such as dipole moments, electrostatic potential maps, infrared spectra, and frontier molecular orbitals (HOMO and LUMO). For the uncatalyzed reactions, we evaluated thermodynamic descriptors, including enthalpy (∆H⁰), Gibbs free energy (∆G⁰), and entropy (∆S⁰), to gain mechanistic insights. Reaction pathways were further explored through a hybrid QM/MM strategy combined with Molecular Dynamics (MD) simulations. The esterification of lauric acid with (-)-α-bisabolol proceeds via an SN2-type mechanism. The findings indicate that, in the absence of a catalyst, the reaction is not spontaneous; however, the use of CeO2 as a heterogeneous catalyst significantly enhances the spontaneity, favoring the formation of (-)-α-bisabolol laurate.

Downloads

Download data is not yet available.

Author Biographies

  • Wellington da Conceição Lobato do Nascimento, Federal University of Maranhão - UFMA

    PhD student in Chemistry 

  • Alberto Monteiro dos Santos, Brandeis University

    Departament of Chemistry 

  • Natanael de Sousa Sousa, Federal University of Maranhão – UFMA

    PhD in Chemistry 

  • Carlos Alberto Lira Júnior, Federal University of Maranhão – UFMA

    PhD in Biotechnology 

  • Jerônimo Lameira Silva, Federal University of Pará – UFPA

    Institute of Biological Sciences 

  • Adeilton Pereira Maciel, Federal University of Rio Grande of Norte – UFRN

    Department of Chemistry 

References

[1] Bhatia SK, Bhatia RK, Jeon J, Pugazhendhi A, Awasthi MK, Kumar D, Kumar G, Yoon J, Yang Y (2021) An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies, Fuel. 285:119117. https://doi.org/10.1016/j.fuel.2020.119117. DOI: https://doi.org/10.1016/j.fuel.2020.119117

[2] Derr KM, Lopez CV, Maladeniya CP, Tennyson AG, Smith RC (2023) Transesterification-vulcanization route to durable composites from post-consumer poly (ethylene terephthalate), terpenoids, and industrial waste sulfur, J. Polym. Sci. 61:3075-3086. https://doi.org/10.1002/pol.20230503. DOI: https://doi.org/10.1002/pol.20230503

[3] Baskar G, Aiswarya R (2016) Trends in catalytic production of biodiesel from various feedstocks. Renew. and Sustain. Energy Rev. 57:496-504. https://doi.org/10.1016/j.rser.2015.12.101. DOI: https://doi.org/10.1016/j.rser.2015.12.101

[4] Suppes GJ, Bockwinkel K, Lucas S, Botts JB, Mason MH, Heppert JA (2001) Calcium Carbonate Catalyzed of Fat and Oils, J Am Oil Chem Soc. 78:139-146. https://doi.org/10.1007/s11746-001-0234-y. DOI: https://doi.org/10.1007/s11746-001-0234-y

[5] Appaturi JN, Andas J, Ma YK, Phoon BL, Batagarawa SM, Khoerunnisa F, Hussin MZ, Ng EP (2022) Recent advances in heterogeneous catalysts for the synthesis of alkyl levulinate biofuel additives from renewable levulinic acid: A comprehensive review, Fuel 323:124362. https://doi.org/10.1016/j.fuel.2022.124362. DOI: https://doi.org/10.1016/j.fuel.2022.124362

[6] Trovarelli A., Catalysis by ceria and Related Materials. 2. ed. Imperial College Press, London. 2002. https://doi.org/10.1142/p249. DOI: https://doi.org/10.1142/p249

[7] Elgharbawy AS, Sadik WA, Sadek OM, Kasaby MA (2021) A review on biodiesel feedstocks and production technologies, J. Chil. Chem. Soc. 66:5098–5106. https://dx.doi.org/10.4067/S0717-97072021000105098. DOI: https://doi.org/10.4067/S0717-97072021000105098

[8] Matsue M, Mori Y, Nagase S, Sugiyama Y, Hirano R, Ogai K, Ogura K, Kurihara S, Okamoto S. (2019) Measuring the Antimicrobial Activity of Lauric Acid against Various Bacteria in Human Gut Microbiota Using a New Method, Cell Transplant. 28:1258–1268. https://dx.doi.org/10.1177/0963689719881366. DOI: https://doi.org/10.1177/0963689719881366

[9] Alexandre JYNH, Cavalcante FTT, Freitas LM, Castro AP, Borges PT, Sousa Junior PG, Filho MNR, Lopes ASS, Fonseca AM, Lomonaco D, Rios MAS, Santos JCS (2022) A Theoretical and Experimental Study for Enzymatic Biodiesel Production from Babassu Oil (Orbignya sp.) Using Eversa Lipase, Catalysts 12:1322. https://doi.org/10.3390/catal12111322. DOI: https://doi.org/10.3390/catal12111322

[10] Rangel NVP, Silva LP, Pinheiro VS, Figueredo IM, Campos OS, Costa SN, Luna FMT, Cavalcante Jr. CL, Marinho ES, Lima-Neto P, Maria Rios MA (2021) Effect of additives on the oxidative stability and corrosivity of biodiesel samples derived from babassu oil and residual frying oil: An experimental and theoretical assessment, Fuel. 291:119939. https://doi.org/10.1016/j.fuel.2020.119939. DOI: https://doi.org/10.1016/j.fuel.2020.119939

[11] Maciel AP (2016) Babassu biofuels: technical essay on opportunities for producing biofuels from babassu coconut. EDUFMA, São Luís-MA, Brazil.

[12] Souza ERL, Gomes NML, J. H. A. (2021) Propriedades farmacológicas do Sesquiterpeno α-Bisabolol: uma breve revisão. Arch Health Invest., 10:1–6. https://doi.org/10.21270/archi.v10i1.3183. DOI: https://doi.org/10.21270/archi.v10i1.3183

[13] Tan H, Lou B, Shen A & Ning C. (2023) Experimental and theoretical research on one-step oxidative esterification of methyl acrolein with methanol. Ind. Eng. Chem. Res., 62:21609-21618. https://doi.org/10.1021/acs.iecr.3c03136. DOI: https://doi.org/10.1021/acs.iecr.3c03136

[14] Majidian S, Rashid HI, Naghdi Y, Irani M, & Samadi S. (2025) Copper‐Catalyzed Simultaneous Dehydrogenation and Enantioselective Allylic Oxidation of Alkanes Using Chiral Heterogeneous Ligands to Produce Allylic Esters and Theoretical Investigation of the Mechanism. Appl. Organomet. Chem., 39:e7857. https://doi.org/10.1002/aoc.7857. DOI: https://doi.org/10.1002/aoc.7857

[15] Stewart JJP (2009) Application of the PM6 method to modeling the solid state, J. Mol. Model., 15:765–805. https://doi.org/10.1007/s00894-008-0299-7. DOI: https://doi.org/10.1007/s00894-008-0420-y

[16] Praveen PA, Saravanapriya D, Bhat SV, Arulkannan K, Kanagasekaran T (2024) Comprehensive analysis of DFT-3C methods with B3LYP and experimental data to model optoelectronic properties of tetracene, Mat. Sci. Semicond. Process., 158:108159. https://doi.org/10.1016/j.mssp.2024.108159. DOI: https://doi.org/10.1016/j.mssp.2024.108159

[17] Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Account. 120:215–241. https://doi.org/10.1007/s00214-007-0310-x. DOI: https://doi.org/10.1007/s00214-007-0310-x

[18] Field MJ (2008) The pDynamo Program for Molecular Simulations using Hybrid Quantum Chemical and Molecular Mechanical Potentials, J. Chem. Theory Comput., 4:1151–1161. https://doi.org/10.1021/ct800092p. DOI: https://doi.org/10.1021/ct800092p

[19] Neese F, Wennmohs F, Becker U, Riplinger C (2020) The ORCA quantum chemistry program package, J. Chem. Phys., 152:224108. https://doi.org/10.1063/5.0004608. DOI: https://doi.org/10.1063/5.0004608

[20] Zhu X, Lopes PEM, MacKerell Jr AD (2013) Recent developments and applications of the CHARMM force fields, WIREs Comput Mol Sci., 3:386–408. https://doi.org/10.1002/wcms.74. DOI: https://doi.org/10.1002/wcms.74

[21] Reed AE, Weinhold F (1985) Natural Population Analysis. J Chem Phys., 83:735–746. https://doi.org/10.1063/1.449486. DOI: https://doi.org/10.1063/1.449486

[22] Politzer P, Murray J (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules, Theor Chem Acc., 108:134–142. https://doi.org/10.1007/s00214-002-0363-9. DOI: https://doi.org/10.1007/s00214-002-0363-9

[23] Fleming (1976) Frontier Orbitals and Organic Chemical Reactions. John Wiley & Sons, New York.

[24] Sinclair RG, McKay AF, Jones RN (1952) The infrared absorption spectra of saturated fatty acids and esters, J. Am. Chem. Soc., 74:6070–6075. https://doi.org/10.1021/ja01130a033. DOI: https://doi.org/10.1021/ja01130a033

[25] Oliveira FS, Freitas TS, Cruz RP, Costa MS, Pereira RLS, Quintans-Júnior LJ, Andrade TA, Menezes PP, Sousa BMH, Nunes PS, Serafini MR, Menezes IRA, Araújo AAS, Coutinho HDM (2017) Evaluation of the antibacterial and modulatory potential of a-bisabolol, b-cyclodextrin and a-bisabolol/b-cyclodextrin complex, Biomed Pharmacother 93:87–94. https://doi.org/10.1016/j.biopha.2017.06.020. DOI: https://doi.org/10.1016/j.biopha.2017.06.020

[26] Mucelini J, Costa-Amaral R, Seminovski Y, Silva JLF (2018) Ab initio investigation of the formation of ZrO2-like structures upon the adsorption of Zrn on the CeO2 (111) surface, J. Chem. Phys., 149:164701. https://doi.org/10.1063/1.5063732. DOI: https://doi.org/10.1063/1.5063732

Downloads

Published

2025-11-19

How to Cite

COMPUTATIONAL INSIGHTS INTO THE ESTERIFICATION OF LAURIC ACID (C12) WITH α-BISABOLOL OVER CeO2 AS A HETEROGENEOUS CATALYST. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 20(2), 1-21. https://doi.org/10.61164/jzjcha21