ALTERNATIVAS PARA SALAMES SALUDABLES: REVISIÓN DE ALCANCE
Composición fisicoquímica del salami: revisión del alcance
DOI:
https://doi.org/10.61164/rmnm.v6i1.2224Palabras clave:
embutidos fermentados, sostenibilidad, ultraprocessadosResumen
En esta revisión se realizó una descripción general de la composición del salami, con el objetivo de proporcionar una base de datos de referencia para que los profesionales e investigadores de la industria alimentaria comprendan enfoques para mantener o mejorar la calidad de este producto cárnico. Entre los factores relacionados con la composición del salami destaca el tipo de elaboración. Otro factor relevante fue la reducción del contenido de grasa, objetivo para aumentar la calidad nutricional de la fracción lipídica, en sustitución de la grasa del cerdo. El tipo de matriz cárnica también tuvo evidencia, ya sea por la valorización de diferentes grupos raciales de cerdos autóctonos o por el uso alternativo de otras fuentes de matrices cárnicas. La adición de sales no sódicas ha sido objeto de estudios exclusivos o combinados. El desarrollo de nuevas tecnologías en el procesamiento del salami debe responder a los estándares de identidad y calidad de este producto cárnico reestructurado. Y si bien los productos cárnicos ultraprocesados son parte de la dieta, el suministro nutricional y la seguridad alimentaria, la búsqueda de dietas saludables y sostenibles surge ante los desafíos para el desarrollo de sistemas productivos integrados, con una creciente demanda de productos de etiqueta limpia.
Referencias
ALABISO, M. et al. Fatty acid composition of salami made by meat from different commercial categories of indigenous dairy cattle. Animals, v. 11, n. 4, p. 1–13, 2021. DOI: https://doi.org/10.3390/ani11041060
ALAMPRESE, C.; FONGARO, L.; CASIRAGHI, E. Effect of fresh pork meat conditioning on quality characteristics of salami. Meat Science, v. 119, p. 193–198, 2016. DOI: https://doi.org/10.1016/j.meatsci.2016.05.004
ALTEMIO, A. D. C. et al. Market research, sensory, physical and chemical analysis of Italian-type salami sold in the city of Dourados – MS. Research, Society and Development, v. 11, n. 5, p. e8511527783, 2022. DOI: https://doi.org/10.33448/rsd-v11i5.27783
AMBROSIO, R. L. et al. Effects of different levels of inclusion of apulo‐calabrese pig meat on microbiological, physicochemical and rheological parameters of salami during ripening. Animals, v. 11, n. 11, 2021. DOI: https://doi.org/10.3390/ani11113060
BACKES, Â. M. et al. Características físico-químicas e aceitaç ão sensorial de salame tipo Italiano com adição de óleo de canola. Semina:Ciencias Agrarias, v. 34, n. 6 SUPPL. 2, p. 3709–3720, 2013. DOI: https://doi.org/10.5433/1679-0359.2013v34n6Supl2p3709
BAGGIO, S. R.; BRAGAGNOLO, N. Cholesterol oxide, cholesterol, total lipid and fatty acid contents in processed meat products during storage. Lwt, v. 39, n. 5, p. 513–520, 2006. DOI: https://doi.org/10.1016/j.lwt.2005.03.007
BIS-SOUZA, C. V.; PENNA, A. L. B.; SILVA BARRETTO, A. C. DA. Applicability of potentially probiotic Lactobacillus casei in low-fat Italian type salami with added fructooligosaccharides: in vitro screening and technological evaluation. Meat Science, v. 168, n. April, p. 108186, 2020. DOI: https://doi.org/10.1016/j.meatsci.2020.108186
BONACINA, M.; SILVA, G. S. DA; MITTERER-DALTOÉ, M. L. Physicochemical quality and consumer discrimination of industrial and traditional fermented sausages. Ciencia Rural, v. 50, n. 7, p. 1–9, 2020. DOI: https://doi.org/10.1590/0103-8478cr20200143
BRASIL. [2000]. Ministério da Agricultura e do Abastecimento. Regulamento técnico de identidade e qualidade de salame https://www.gov.br/agricultura/pt-br/assuntos/defesa-agropecuaria/copy_of_suasa/regulamentos-tecnicos-de-identidade-e-qualidade-de-produtos-de-origem-animal-1/rtiq-carneos-e-seus-derivados-1
BRASIL Decreto nº 9.013, de 29 de março de 2017 Regulamenta a Lei nº 1.283, de 18 de dezembro de 1950 e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre a inspeção industrial e sanitária de produtos de origem animal. p.1–76, 2019. https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/decreto/d9013.htm
BURLINGAME, B. et al. IUNS Task Force on Sustainable Diets - LINKING NUTRITION AND FOOD SYSTEMS. Trends in Food Science and Technology, v. 130, n. September, p. 42–50, 2022. DOI: https://doi.org/10.1016/j.tifs.2022.09.007
CAMPAGNOL, P. C. B. et al. The influence of achyrocline satureioides (“Marcela”) extract on the lipid oxidation of salami. Ciência e Tecnologia de Alimentos, v. 31, n. 1, p. 101–105, 2011. DOI: https://doi.org/10.1590/S0101-20612011000100013
CHAKANYA, C. et al. Changes in the physico-chemical attributes through processing of salami made from blesbok (Damaliscus pygargus phillipsi), eland (Taurotragus oryx), fallow deer (Dama dama), springbok (Antidorcas marsupialis) and black wildebeest (Connochaetes gnou) in co. Meat Science, v. 146, n. July, p. 87–92, 2018. DOI: https://doi.org/10.1016/j.meatsci.2018.07.034
DEMARCO, F. et al. Effects of Natural Antioxidants on the Lipid Oxidation, Physicochemical and Sensory Characteristics, and Shelf Life of Sliced Salami. Food and Bioprocess Technology, v. 15, n. 10, p. 2282–2293, 2022. DOI: https://doi.org/10.1007/s11947-022-02877-2
ESPINALES, C. et al. Addition of ungerminated and germinated white rice and brown rice to improve the quality of salami. Lwt, v. 181, n. April, 2023. DOI: https://doi.org/10.1016/j.lwt.2023.114769
FARIA, G. Y. Y. et al. Effect of ultrasound-assisted cold plasma pretreatment to obtain sea asparagus extract and its application in Italian salami. Food Research International, v. 137, n. June, p. 109435, 2020. DOI: https://doi.org/10.1016/j.foodres.2020.109435
FLORES, M. Understanding the implications of current health trends on the aroma of wet and dry cured meat products. Meat Science, v. 144, n. April, p. 53–61, 2018. DOI: https://doi.org/10.1016/j.meatsci.2018.04.016
GAGLIO, R. et al. Valorization of indigenous dairy cattle breed through salami production. Meat Science, v. 114, p. 58–68, 2016. DOI: https://doi.org/10.1016/j.meatsci.2015.12.014
GUIMARÃES, A. S. et al. Characterization of natural curing agents from Japanese radish (Raphanus sativus L.) for their use in clean label restructured cooked meat products. Lwt, v. 150, n. March, 2021. DOI: https://doi.org/10.1016/j.lwt.2021.111970
KHARRAT, N. et al. Synergistic effect of polysaccharides, betalain pigment and phenolic compounds of red prickly pear (Opuntia stricta) in the stabilization of salami. International Journal of Biological Macromolecules, v. 111, p. 561–568, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2018.01.025
KUNRATH, C. et al. Application and evaluation of propolis , the natural antioxidant in Italian-type salami Aplicação e avaliação de própolis , o antioxidante natural , em salame tipo Italiano. Brazilian Journal of Food Technology, v. 4, p. 1–10, 2017.
MAFRA, J. F. et al. Influence of red propolis on the physicochemical, microbiological and sensory characteristics of tilapia (Oreochromis niloticus) salami. Food Chemistry, v. 394, n. June, 2022. DOI: https://doi.org/10.1016/j.foodchem.2022.133502
MARINO, R. et al. Nutritional properties and consumer evaluation of donkey bresaola and salami: Comparison with conventional products. Meat Science, v. 101, p. 19–24, 2015. DOI: https://doi.org/10.1016/j.meatsci.2014.11.001
MEIRELES, B. et al. Avaliação do potencial corante e antioxidante de betalaínas (Beta vulgaris, L.) em mortadela de frango Evaluation of the potential coloring and antioxidant of betalains (Beta vulgaris, L.) in chicken mortadella. Journal of Chemical Information and Modeling, v. 21, n. 1, p. 1–9, 2020. DOI: https://doi.org/10.33448/rsd-v9i7.3995
MENDES, A. C. G. et al. Salames tipo milano elaborados com fibras de subprodutos da produção de vinho tinto. Ciencia Rural, v. 44, n. 7, p. 1291–1296, 2014. DOI: https://doi.org/10.1590/0103-8478cr20130389
MIRAGLIA, D. et al. Microbiological, chemical-physical and sensory characteristics of Fabriano salami from pigs fed Oregano vulgaris extract. Italian Journal of Food Safety, v. 6, n. 4, p. 203–207, 2017. DOI: https://doi.org/10.4081/ijfs.2017.6906
MONTANARI, C. et al. Effects of the diameter on physico-chemical, microbiological and volatile profile in dry fermented sausages produced with two different starter cultures. Food Bioscience, v. 22, n. December 2017, p. 9–18, 2018. DOI: https://doi.org/10.1016/j.fbio.2017.12.013
MORETTI, V. M. et al. Chemical and microbiological parameters and sensory attributes of a typical Sicilian salami ripened in different conditions. Meat Science, v. 66, n. 4, p. 845–854, 2004. DOI: https://doi.org/10.1016/j.meatsci.2003.08.006
NOBILE, M. A. DEL et al. New strategies for reducing the pork back-fat content in typical Italian salami. Meat Science, v. 81, n. 1, p. 263–269, 2009. DOI: https://doi.org/10.1016/j.meatsci.2008.07.026
NOVELLI, E. et al. Addition of phenols compounds to meat dough intended for salami manufacture and its antioxidant effect. Italian Journal of Food Safety, v. 3, n. 3, p. 154–156, 2014. DOI: https://doi.org/10.4081/ijfs.2014.1704
NUNZIO, M. DI et al. Cleaning the Label of Cured Meat; Effect of the Replacement of Nitrates/Nitrites on Nutrients Bioaccessibility, Peptides Formation, and Cellular Toxicity of In Vitro Digested Salami. International Journal of Molecular Sciences, v. 23, n. 20, p. 1–18, 2022. DOI: https://doi.org/10.3390/ijms232012555
ÖZÜNLÜ, O.; ERGEZER, H. Possibilities of using dried oyster mushroom (Pleurotus ostreatus) in the production of beef salami. Journal of Food Processing and Preservation, v. 45, n. 2, p. 1–12, 2021. DOI: https://doi.org/10.1111/jfpp.15117
PRAMUALKIJJA, T.; PIRAK, T.; KERDSUP, P. Effect of salt, rice bran oil and malva nut gum on chemical, physical and physico - Chemical properties of beef salt - Soluble protein and its application in low fat salami. Food Hydrocolloids, v. 53, p. 303–310, 2016. DOI: https://doi.org/10.1016/j.foodhyd.2015.03.004
RANUCCI, D. et al. Microbial, chemical-physical, rheological and organoleptic characterisation of roe deer (Capreolus capreolus) salami. Italian Journal of Food Safety, v. 8, n. 3, p. 137–142, 2019. DOI: https://doi.org/10.4081/ijfs.2019.8195
REGUENGO, L. M. et al. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Research International, v. 152, n. November 2021, 2022. DOI: https://doi.org/10.1016/j.foodres.2021.110871
ROCCHETTI, G. et al. Changes in the chemical and sensory profile of ripened Italian salami following the addition of different microbial starters. Meat Science, v. 180, n. May, 2021. DOI: https://doi.org/10.1016/j.meatsci.2021.108584
SCERRA, M. et al. Influence of Dietary Inclusion of Exhausted Bergamot By-Product in Pigs on Animal Performance, Fatty Acid Profile and Oxidative Stability of Meat and Meat Products. Animals, v. 12, n. 6, p. 1–16, 2022. DOI: https://doi.org/10.3390/ani12060757
SCHALKWYK, D. L. VAN et al. Physico-chemical, microbiological, textural and sensory attributes of matured game salami produced from springbok (Antidorcas marsupialis), gemsbok (Oryx gazella), kudu (Tragelaphus strepsiceros) and zebra (Equus burchelli) harvested in Namibia. Meat Science, v. 88, n. 1, p. 36–44, 2011. DOI: https://doi.org/10.1016/j.meatsci.2010.11.028
SETTANNI, L. et al. Evolution of indigenous starter microorganisms and physicochemical parameters in spontaneously fermented beef, horse, wild boar and pork salamis produced under controlled conditions. Food Microbiology, v. 87, n. November 2019, p. 103385, 2020. DOI: https://doi.org/10.1016/j.fm.2019.103385
ŠKRLEP, M. et al. Aromatic profile, physicochemical and sensory traits of dry-fermented sausages produced without nitrites using pork from krškopolje pig reared in organic and conventional husbandry. Animals, v. 9, n. 2, 2019. DOI: https://doi.org/10.3390/ani9020055
SMIT, P. et al. Effects of honeybush (Cyclopia subternata) extract on physico-chemical, oxidative and sensory traits of typical Italian salami. Food Science and Nutrition, v. 8, n. 5, p. 2299–2306, 2020. DOI: https://doi.org/10.1002/fsn3.1509
STAJIĆ, S. et al. Cholesterol content and atherogenicity of fermented sausages made of pork meat from various breeds. Procedia Food Science, v. 1, p. 568–575, 2011. DOI: https://doi.org/10.1016/j.profoo.2011.09.086
STOICA, M. et al. New Strategies for the Total/Partial Replacement of Conventional Sodium Nitrite in Meat Products: a Review. Food and Bioprocess Technology, v. 15, n. 3, p. 514–538, 2022. DOI: https://doi.org/10.1007/s11947-021-02744-6
SUMMO, C. et al. Vacuum-packed ripened sausages: Evolution of oxidative and hydrolytic degradation of lipid fraction during long-term storage and influence on the sensory properties. Meat Science, v. 84, n. 1, p. 147–151, 2010. DOI: https://doi.org/10.1016/j.meatsci.2009.08.041
TABANELLI, G. et al. Safety and technological issues of dry fermented sausages produced without nitrate and nitrite. Food Research International, v. 160, n. March, p. 111685, 2022. DOI: https://doi.org/10.1016/j.foodres.2022.111685
VARGA-VISI, É. et al. Effects of Surface Treatment with Thymol on the Lipid Oxidation Processes, Fatty Acid Profile and Color of Sliced Salami during Refrigerated Storage. Foods, v. 11, n. 23, 2022. DOI: https://doi.org/10.3390/foods11233917
YIM, D. G.; ALI, M.; NAM, K. C. Comparison of meat quality traits in salami added by nitrate-free salts or nitrate pickling salt during ripening. Food Science of Animal Resources, v. 40, n. 1, p. 11–20, 2020. DOI: https://doi.org/10.5851/kosfa.2019.e61
ZANARDI, E. et al. Oxidative stability of lipids and cholesterol in salame Milano, coppa and Parma ham: Dietary supplementation with vitamin E and oleic acid. Meat Science, v. 55, n. 2, p. 169–175, 2000. DOI: https://doi.org/10.1016/S0309-1740(99)00140-0
___. Lipid and colour stability of Milano-type sausages: Effect of packing conditions. Meat Science, v. 61, n. 1, p. 7–14, 2002. DOI: https://doi.org/10.1016/S0309-1740(01)00152-8
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Revista Multidisciplinar do Nordeste Mineiro

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.