ESTUDO PREDITIVO ECOTOXICOLÓGICO DE FUNGICIDAS DERIVADOS DA LUOTONINA A

Autores

  • Anthony Barbosa Belarmino Universidade Estadual do Ceará
  • Damião Sampaio De Sousa Universidade Estadual do Ceará
  • Francisco Rogênio Da Silva Mendes Universidade Estadual do Ceará
  • Gabrielle Silva Marinho Faculdade de Educação, Ciências e Letras de Iguatu

DOI:

https://doi.org/10.61164/rmnm.v6i1.2481

Palavras-chave:

Botrytis cinerea, In silico, Ratos, Narcose

Resumo

O fungo Botrytis cinerea é um agente patogênico que causa mofo cinzento em culturas de estufa, afetando a qualidade dos produtos e provocando a morte das plantas. O controle com fungicidas tem sido limitado devido à elevada resistência do fungo e como consequência da contínua aplicação dessas substâncias, ocorrem os impactos ambientais. Dessa forma, são necessários novos fungicidas que eliminem o B. cinerea, mas que sejam menos tóxicos ao ecossistema. Nesse sentido, novos compostos antifúngicos foram derivados da luotonina A, os quais apresentaram maior eficácia contra o B. cinerea. O presente estudo objetiva avaliar em modelo in silico as consequências dos fungicidas derivados da luotonina A (10a, 10m, 10l, 10r e 10s) no ecossistema, analisando suas propriedades ambientais, ecotoxicidade e segurança toxicológica. As moléculas foram analisadas pelos softwares ECOSAR® e JANUS®, que permitiram analisar a toxicidade em organismos aquáticos e a persistência em água, solo e sedimento. Também foram utilizados as ferramentas GUSAR© e GraphPAD Prism® para aferir a toxicidade em diferentes vias de exposição nos ratos e comparar as doses entre as vias, utilizando o teste estatístico one way anova. Os resultados indicaram que o composto 10s apresenta baixa toxicidade para peixes e Daphnia magna tanto no teste agudo, como no crônico. Em algas verdes, na avaliação aguda o 10s exibiu baixa inibição no crescimento da biomassa, enquanto no ensaio crônico, os fungicidas 10l, 10r e 10s apresentaram baixo efeito inibitório. Na avaliação de toxicidade em ratos, todos os compostos demonstraram ser nocivos à saúde ao serem ingeridos. Diante desses resultados, são necessários novos estudos in silico e in vivo para validar os dados apresentados e avaliar os pontos finais de toxicidade dos fungicidas.

Referências

AHMED, Sium et al. A comprehensive in silico exploration of pharmacological properties, bioactivities and COX-2 inhibitory potential of eleutheroside B from Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. Journal of Biomolecular Structure and Dynamics, v. 39, n. 17, p. 6553–6566, 2021. Available at: https://doi.org/10.1080/07391102.2020.1803135. Accessed May 22, 2024. DOI: https://doi.org/10.1080/07391102.2020.1803135

AL-KHAZRAJI, Hind I.; THAKIR, Baraa M.; EL-HADEETI, Sawsan A.K. Bioindicators of pesticides pollution in the aquatic environment: A review. Plant Archives, v. 20, p. 1607–1618, 2020. Available at: https://l1nq.com/Z3ACZ. Accessed May 22, 2024.

BU, Qingwei et al. Performance Comparison between the Specific and Baseline Prediction Models of Ecotoxicity for Pharmaceuticals: Is a Specific QSAR Model Inevitable?. Journal of Chemistry, v. 2021, 2021. Available at: https://doi.org/10.1155/2021/5563066. Accessed May 22, 2024. DOI: https://doi.org/10.1155/2021/5563066

GAD, Shayne C. Rodent Models for Toxicity Testing and Biomarkers. Biomarkers in Toxicology. [S. l.]: Elsevier Inc., 2019. p. 7–73. Available at: http://dx.doi.org/10.1016/B978-0-12-814655-2.00002-5. Accessed May 22, 2024. DOI: https://doi.org/10.1016/B978-0-12-814655-2.00002-5

GALIMBERTI, Francesco; MORETTO, Angelo; PAPA, Ester. Application of chemometric methods and QSAR models to support pesticide risk assessment starting from ecotoxicological datasets. Water Research, v. 174, p. 1–14, 2020. Available at: https://doi.org/10.1016/j.watres.2020.115583. Accessed May 22, 2024. DOI: https://doi.org/10.1016/j.watres.2020.115583

GAVA, Angelo et al. Occurrence and impact of fungicides residues on fermentation during wine production– A review. Food Additives & Contaminants - Part A, v. 38, n. 6, p. 943–961, 2021. Available at: https://doi.org/10.1080/19440049.2021.1894357. Accessed May 22, 2024. DOI: https://doi.org/10.1080/19440049.2021.1894357

HARPER, Lincoln A. et al. Fungicide resistance characterized across seven modes of action in Botrytis cinerea isolated from Australian vineyards. Pest Manag Sci., v. 80, n. 4, p. 1326–1340, 2023. Available at: https://doi.org/10.1002/ps.6749. Accessed May 24, 2024. DOI: https://doi.org/10.1002/ps.6749

IANCU, Vasile-Ion et al. Occurrence and distribution of azole antifungal agents in eight urban Romanian waste water treatment plants. Science of the Total Environment, v. 920, p. 1–9, 2024. Available at: https://doi.org/10.1016/j.scitotenv.2024.170898. Accessed May 24, 2024. DOI: https://doi.org/10.1016/j.scitotenv.2024.170898

KHOSHNOOD, Zahra. Acute and Chronic Effects of Pesticides on Non-Target Aquatic Organisms. Transylv. Rev. Syst. Ecol. Res., v. 25, n. 3, p. 71–78, 2023. Available at: https://doi.org/10.2478/trser-2023-0022. Accessed May 24, 2024. DOI: https://doi.org/10.2478/trser-2023-0022

MUSLIKH, Faisal Akhmal et al. In Silico Molecular Docking and ADMET Analysis for Drug Development of Phytoestrogens Compound with Its Evaluation of Neurodegenerative Diseases. Borneo Journal of Pharmacy, v. 5, n. 4, p. 357–366, 2022. Available at: https://doi.org/10.33084/bjop.v5i4.3801. Accessed May 24, 2024. DOI: https://doi.org/10.33084/bjop.v5i4.3801

ROGIERS, Vera et al. The way forward for assessing the human health safety of cosmetics in the EU - Workshop proceedings. Toxicology, v. 436, p. 1–14, 2020. Available at: https://doi.org/10.1016/j.tox.2020.152421. Accessed May 23, 2024. DOI: https://doi.org/10.1016/j.tox.2020.152421

RONCAGLIONI, Alessandra; LOMBARDO, Anna; BENFENATI, Emilio. The VEGAHUB Platform: The Philosophy and the Tools. Alternatives to Laboratory Animals, v. 50, n. 2, p. 121–135, 2022. Available at: https://doi.org/10.1177/02611929221090530. Accessed May 23, 2024. DOI: https://doi.org/10.1177/02611929221090530

SALO, Tiina; SALOVIUS-LAURÉN, Sonja. Green algae as bioindicators for long-term nutrient pollution along a coastal eutrophication gradient. Ecological Indicators, v. 140, p. 1–10, 2022. Available at: https://doi.org/10.1016/j.ecolind.2022.109034. Accessed May 23, 2024. DOI: https://doi.org/10.1016/j.ecolind.2022.109034

SIKANDAR, Minahil; MOHSIN, Ayesha; MALIK, Alina. Ecological Risk Assessment of Inorganic Arsenic and Mercuric Fungicides Through Biological Tools. Indonesian Journal of Innovation and Applied Sciences, v. 3, n. 2, p. 133–145, 2023. Available at: https://doi.org/10.47540/ijias.v3i2.742. Accessed May 23, 2024. DOI: https://doi.org/10.47540/ijias.v3i2.742

WRIGHT, R. Tracy et al. Methodology document for the ecological structure-activity relationship model (ECOSAR) class program. U.S. Environmental Protection Agency, p. 1–40, 2022a. Available at: https://l1nq.com/bIiFC. Accessed May 23, 2024.

WRIGHT, R. Tracy et al. Operation manual for the ecolological Structure-Activity Relationship Model (ECOSAR) Class Program. U.S. Environmental Protection Agency, p. 1–42, 2022b. Available at: https://l1nq.com/Wn3YP. Accessed May 23, 2024.

XIAO, Jinjing et al. Incorporating Tenax into the in vitro method to improve the predictive capability of bioaccessibility of triazole fungicides in grape. Food Chemistry, v. 396, p. 1–8, 2022. Available at: https://doi.org/10.1016/j.foodchem.2022.133740. Accessed May 27, 2024. DOI: https://doi.org/10.1016/j.foodchem.2022.133740

YANG, Guan Zhou et al. Discovery of luotonin A analogues as potent fungicides and insecticides: Design, synthesis and biological evaluation inspired by natural alkaloid. European Journal of Medicinal Chemistry, v. 194, p. 1–12, 2020. Available at: https://doi.org/10.1016/j.ejmech.2020.112253. Accessed May 27, 2024. DOI: https://doi.org/10.1016/j.ejmech.2020.112253

YANG, Lu; WANG, Yinghuan; CHANG, Jing et al. QSAR modeling the toxicity of pesticides against Americamysis bahia. Chemosphere, v. 258, p. 1–8, 2020. Available at: https://doi.org/10.1016/j.chemosphere.2020.127217. Accessed May 27, 2024. DOI: https://doi.org/10.1016/j.chemosphere.2020.127217

YANG, Lu; WANG, Yinghuan; HAO, Weiyu et al. Modeling pesticides toxicity to Sheepshead minnow using QSAR. Ecotoxicology and Environmental Safety, v. 193, p. 1–7, 2020. Available at: https://doi.org/10.1016/j.ecoenv.2020.110352. Accessed May 27, 2024. DOI: https://doi.org/10.1016/j.ecoenv.2020.110352

ZUPAROV, Mirakbar A. et al. In Vitro Efficacy Testing of Fungicides on Botrytis cinerea causing Gray Mold of Tomato. International Journal on Emerging Technologies, v. 11, n. 5, p. 50–55, 2020. Available at: https://l1nq.com/3RaRv. Accessed May 27, 2024.

Downloads

Publicado

2024-06-28

Como Citar

ESTUDO PREDITIVO ECOTOXICOLÓGICO DE FUNGICIDAS DERIVADOS DA LUOTONINA A. (2024). REMUNOM, 6(1). https://doi.org/10.61164/rmnm.v6i1.2481