EFFICIENCY OF BACTERIA IN THE BIOREMEDIATION OF AZO DYES IN TEXTILE EFFLUENTS
DOI:
https://doi.org/10.61164/djpy2159Keywords:
Bioremediation, Azo dyes, Textile industry, Bacteria, EffluentsAbstract
This study aimed to map the most investigated bacterial genera in the bioremediation of azo dyes and identify those that present higher decolorization efficiency under controlled conditions. A systematic review with a qualitative approach was conducted in the Scopus database, covering the period from 2013 to 2025 and following PRISMA guidelines for identification, selection, eligibility, and inclusion of studies. A total of 15 articles were analyzed, reporting decolorization rates ranging from 78.20% to 100%. The genera Bacillus, Pseudomonas, and Enterobacter were the most frequently investigated, mainly tested against the dyes Reactive Black 5, Metanil Yellow G, and Congo Red. In addition to color reduction, several studies highlighted decreases in biochemical oxygen demand (BOD), chemical oxygen demand (COD), and Cr(VI) concentration, along with phytotoxicity tests, indicating significant advances for environmental and industrial applications of these techniques. The discussion of results reinforces that bioremediation is a promising alternative for the decolorization of textile effluents, although most research has been carried out under controlled laboratory conditions, evidencing the need to expand tests to real application scenarios. The relevance of this work lies in systematizing scattered data on microorganisms capable of degrading azo dyes, highlighting the efficiency of specific bacterial genera and their potential use in complex industrial processes, especially in the textile sector, where wastewater treatment remains a significant environmental and economic challenge.
Downloads
References
ABIT. Perfil do Setor. 2023. Disponível em: https://www.abit.org.br/cont/perfil-do-setor. Acesso em: 7 dez. 2023.
AL-ANSARI, M. M. et al. Decolourization of azo dye using a batch bioreactor by an indigenous bacterium Enterobacter aerogenes ES014 from the waste water dye effluent and toxicity analysis. Environmental Research, v. 205, 2022. DOI: https://doi.org/10.1016/j.envres.2021.112189
ARIFFIN, M. et al. Coagulation and Flocculation Treatment of Wastewater in Textile Industry Using Chitosan. Journal of Chemical and Natural Resources Engineering, v. 4, p. 43–53, 2009.
ARSLAN-ALATON, I.; GURSOY, H.; SCHMIDT, J. Advanced oxidation of acid and reactive dyes: Effect of Fenton treatment on aerobic, anoxic and anaerobic processes. Dyes and Pigments, v. 78, p. 117–130, 2008. DOI: https://doi.org/10.1016/j.dyepig.2007.11.001
BABU, B. et al. Textile technology: Cotton textile processing: Waste generation and effluent treatment. Journal of Cotton Science, v. 11, p. 141–153, 2007.
CERETTA, M. B. et al. Biodegradation of textile wastewater: Enhancement of biodegradability via the addition of co-substrates followed by phytotoxicity analysis of the effluent. Water Science and Technology, v. 2017, n. 2, p. 516–526, 2017. DOI: https://doi.org/10.2166/wst.2018.179
CHENG, H. et al. Efficient reduction of reactive black 5 and Cr(Ⅵ) by a newly isolated bacterium of Ochrobactrum anthropi. Journal of Hazardous Materials, v. 406, 2021. DOI: https://doi.org/10.1016/j.jhazmat.2020.124641
COUTINHO, T. B.; SALES, D. da S.; SALES, C. M. R. Biodiversidade, Fragmentação de Habitats e Epidemiologia da Febre Maculosa Brasileira. Revista PPC –Políticas Públicas e Cidades, v. 14, n. 6, p. 1, 2025. DOI: https://doi.org/10.23900/2359-1552v14n6-68-2025
FRANCA, R. D. G. et al. Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite. Ecotoxicology and Environmental Safety, v. 191, 2020. DOI: https://doi.org/10.1016/j.ecoenv.2019.110007
GAYLARDE, C. C.; BELLINASO, M. de L.; MANFIO, G. P. Aspéctos biológicos e técnicos da biorremediação de xenobióticos. Biotecnologia Ciência & Desenvolvimento, v. 34, p. 35–43, 2009.
GIL, A. C. Como elaborar projetos de pesquisa. 7. ed. São Paulo, SP: Editora Atlas Ltda, 2022.
GUARATINI, C. C. I.; ZANONI, M. V. B. Corantes têxteis. Química Nova, v. 23, p. 71–78, 2000. DOI: https://doi.org/10.1590/S0100-40422000000100013
GUEMBRI, M. et al. Decolorization of textile azo dye Novacron Red using bacterial monoculture and consortium: Response surface methodology optimization. Water Environment Research, v. 93, n. 8, p. 1346–1360, 2021. DOI: https://doi.org/10.1002/wer.1521
GUO, G. et al. Decolorization and detoxification of azo dye by halo-alkaliphilic bacterial consortium: Systematic investigations of performance, pathway and metagenome. Ecotoxicology and Environmental Safety, v. 204, 2020. DOI: https://doi.org/10.1016/j.ecoenv.2020.111073
GUO, G. et al. Development and characterization of a halo-thermophilic bacterial consortium for decolorization of azo dye. Chemosphere, v. 272, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2021.129916
HUSSAIN, S. et al. Biodecolorization of reactive black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan. Ecotoxicology and Environmental Safety, v. 98, p. 331–338, 2013. DOI: https://doi.org/10.1016/j.ecoenv.2013.09.018
IHSANULLAH, D. et al. Bioremediation of dyes: Current status and prospects. Journal of Water Process Engineering, v. 38, 2020. DOI: https://doi.org/10.1016/j.jwpe.2020.101680
IKRAM, M. et al. Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater. Water (Switzerland), v. 14, n. 13, 2022. DOI: https://doi.org/10.3390/w14132063
KISHOR, R. et al. Environment friendly degradation and detoxification of Congo red dye and textile industry wastewater by a newly isolated Bacillus cohnni (RKS9). Environmental Technology and Innovation, v. 22, 2021. DOI: https://doi.org/10.1016/j.eti.2021.101425
MISHRA, S.; MAITI, A. Study of simultaneous bioremediation of mixed reactive dyes and Cr(VI) containing wastewater through designed experiments. Environmental Monitoring and Assessment, v. 191, n. 12, 2019. DOI: https://doi.org/10.1007/s10661-019-7976-0
MOHER, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ, v. 339, n. jul21 1, p. b2535–b2535, 2009. DOI: https://doi.org/10.1136/bmj.b2535
NAJME, R. et al. Biodecolorization of Reactive Yellow-2 by Serratia sp. RN34 Isolated from Textile Wastewater. Water Environment Research, v. 87, n. 12, p. 2065–2075, 2015. DOI: https://doi.org/10.2175/106143015X14362865226031
PATEL, H. et al. A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries. Water, v. 14, 2022. DOI: https://doi.org/10.3390/w14193163
PATIL, N. P. et al. Decolourisation of dyes and its mixture by Providencia sp. VNB7 isolated from textile effluent treatment plant. Journal of Industrial Pollution Control, v. 32, n. 2, p. 623–628, 2016.
PRABHAKAR, Y.; GUPTA, A.; KAUSHIK, A. Using indigenous bacterial isolate Nesterenkonia lacusekhoensis for removal of azo dyes: A low-cost ecofriendly approach for bioremediation of textile wastewaters. Environment, Development and Sustainability, v. 24, n. 4, p. 5344–5367, 2022. DOI: https://doi.org/10.1007/s10668-021-01661-0
PRODANOV, C. C.; FREITAS, E. C. de. Metodologia do Trabalho Científico: Métodos e Técnicas da Pesquisa e do Trabalho Acadêmico. 2aed. Novo Hamburgo - RS: Feevale, 2013. Disponível em: Acesso em: 18 jul. 2023.
SAHA, P.; RAO, B. Biotransformation of Reactive Orange 16 by alkaliphilic bacterium Bacillus flexus VITSP6 and toxicity assessment of biotransformed metabolites. International Journal of Environmental Science and Technology, v. 17, 2019. DOI: https://doi.org/10.1007/s13762-019-02256-z
ŞEN, S.; DEMIRER, G. N. Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Research, v. 37, n. 8, p. 1868–1878, 2003. DOI: https://doi.org/10.1016/S0043-1354(02)00577-8
SINGH, A. L. et al. Biodegradation of Reactive Yellow-145 azo dye using bacterial consortium: A deterministic analysis based on degradable Metabolite, phytotoxicity and genotoxicity study. Chemosphere, v. 300, 2022. DOI: https://doi.org/10.1016/j.chemosphere.2022.134504
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Analice Andretti Gomes, Raquel Fidelis da Silva, Diego da Silva Sales, Camila Mendonça Romero Sales

This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
 
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista;
 - Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista, desde que adpatado ao template do repositório em questão;
 - Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
 - Os autores são responsáveis por inserir corretamente seus dados, incluindo nome, palavras-chave, resumos e demais informações, definindo assim a forma como desejam ser citados. Dessa forma, o corpo editorial da revista não se responsabiliza por eventuais erros ou inconsistências nesses registros.
 
POLÍTICA DE PRIVACIDADE
Os nomes e endereços informados nesta revista serão usados exclusivamente para os serviços prestados por esta publicação, não sendo disponibilizados para outras finalidades ou a terceiros.
Obs: todo o conteúdo do trabalho é de responsabilidade do autor e orientador.
						
							