USABILITY OF THE GOOGLE EARTH ENGINE (GEE) TOOL FOR MONITORING AND COMBATING DEFORESTATION IN THE AMAZON REGION

Authors

  • luisfernando C da S Correia UFMA
  • Jennifer da Cruz Arouche Silva Mestre em Ciência e Tecnologia Ambiental pela Universidade Federal do Maranhão
  • Luzidelma do Nascimento Freitas Rocha Mestre em Ciência e Tecnologia Ambiental pela Universidade Federal do Maranhão
  • Kaio da Silva Bandeira Mestre em Ecologia e Conservação da Biodiversidade pela Universidade Estadual do Maranhão

DOI:

https://doi.org/10.61164/7dt9d641

Keywords:

Google Earth Engine; deforestation; Amazon; remote sensing; environmental monitoring.

Abstract

The Amazon region represents an environmental heritage of global significance, whose integrity has been increasingly threatened by illegal deforestation and the improper use of land. In this context, the use of remote sensing technologies has proven essential in addressing these challenges. This article analyzes the usability of the Google Earth Engine (GEE) tool as a strategic instrument for monitoring and combating deforestation in the Amazon. The research adopted a methodology based on a literature review, using databases such as Scopus, SciELO, CAPES, and Web of Science. Selection criteria prioritized studies published between 2017 and 2023 that focused on the use of GEE in forest areas. The results show that GEE stands out for its user-friendly interface, high cloud processing capacity, and extensive satellite data repository, including Landsat, MODIS, and Sentinel, enabling near real-time analysis. The tool has been successfully applied in land use and land cover mapping, identification of critical areas, and decision-making support for public agencies, NGOs, and researchers. Furthermore, it presents low operational costs and can be used even by users with limited technical knowledge. The analysis reinforces the role of GEE as a facilitator of evidence-based environmental management, promoting transparency and efficiency in enforcement and territorial planning actions. It is concluded that GEE is a promising tool for the preservation of the Amazon rainforest, contributing to the reduction of deforestation and the strengthening of environmental public policies.

References

ANGELSEN, A.; KAIMOWITZ, D. Rethinking the causes of deforestation: lessons from economic models. World Bank Research Observer, v. 14, n. 1, p. 73–98, 1999. DOI: https://doi.org/10.1093/wbro/14.1.73

AMANI, M. et al. Plataforma de computação em nuvem Google Earth Engine para aplicações de big data de sensoriamento remoto: uma revisão abrangente. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 13, p. 5326–5350, 2020. DOI: https://doi.org/10.1109/JSTARS.2020.3021052

BINSWANGER, H. P. Brazilian policies that encourage deforestation in the Amazon. Washington: World Bank, 1989.

BRASIL. Constituição (1988). Constituição da República Federativa do Brasil. Brasília, DF: Congresso Nacional, 1988.

CASARIN, D. E. et al. Diabetes mellitus: causas, tratamento e prevenção. Brazilian Journal of Development, v. 8, n. 2, p. 10062–10075, 2022. DOI: https://doi.org/10.34117/bjdv8n2-107

CASTRO, E. Dinâmica socioeconômica e desmatamento na Amazônia. Novos Cadernos NAEA, v. 8, n. 2, p. 5–39, dez. 2005. DOI: https://doi.org/10.5801/ncn.v8i2.51

FEARNSIDE, P. M. Deforestation in Brazilian Amazonia. In: WOHL, E. (ed.). Oxford bibliographies in environmental science. Oxford: Oxford University Press, 2017. p. 1–33. DOI: https://doi.org/10.1093/acrefore/9780199389414.013.102

FOLMER, H.; KOOTEN, G. C. Deforestation. University of Victoria, Department of Economics. Resource Economics and Policy Analysis (REPA) Working Paper, 2006. Disponível em: http://ideas.repec.org/p/rep/wpaper/2006-06.html. Acesso em: 10 jul. 2008.

GEIST, H. J.; LAMBIN, E. F. What drives tropical deforestation? LUCC Report Series, n. 4. Land Use and Land Cover Change, International Geosphere-Biosphere Programme, 2001.

GEE. Google Earth Engine: what is Earth Engine? 2020. Disponível em: https://earthengine.google.com/. Acesso em: 23 jun. 2023.

GOODCHILD, M. F. Os casos de uso da Terra Digital. International Journal of Digital Earth, v. 1, p. 31–42, 2008. DOI: https://doi.org/10.1080/17538940701782528

GORELICK, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, v. 202, p. 18–27, 2017. DOI: https://doi.org/10.1016/j.rse.2017.06.031

KUMAR, L.; MUTANGA, O. Aplicações do Google Earth Engine desde o início: uso, tendências e potencial. Remote Sensing, v. 10, n. 1509, 2018. DOI: https://doi.org/10.3390/rs10101509

LIANG, J.; GONG, J.; LI, W. Aplicações e impactos do Google Earth: uma revisão decadal (2006–2016). ISPRS Journal of Photogrammetry and Remote Sensing, v. 146, p. 91–107, 2018. DOI: https://doi.org/10.1016/j.isprsjprs.2018.08.019

LOVEJOY, T. E.; NOBRE, C. Amazon tipping point. Science Advances, v. 4, n. 2, eaat2340, 2018. DOI: https://doi.org/10.1126/sciadv.aat2340

MENDELSOHN, R. Property rights and tropical deforestation. Oxford Economic Papers, v. 46, p. 750–756, 1994. DOI: https://doi.org/10.1093/oep/46.Supplement_1.750

PADARIAN, J.; MINASNY, B.; McBRATNEY, A. B. Using Google’s cloud-based platform for digital soil mapping. Computers & Geosciences, v. 83, p. 80–88, 2015. DOI: https://doi.org/10.1016/j.cageo.2015.06.023

PAGANI, R. N.; KOVALESKI, J. L.; RESENDE, L. M. Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, v. 105, n. 3, p. 2109–2135, 2015. DOI: https://doi.org/10.1007/s11192-015-1744-x

PARENTE, L. et al. Mapeamento de próxima geração: combinando aprendizado profundo, computação em nuvem e big data de sensoriamento remoto. Remote Sensing, v. 11, n. 2881, 2019.

SCRIECIU, S. S. Determinants of tropical deforestation: the role of remote sensing and econometric approaches. In: 10th International Conference of the European Association of Environmental and Resource Economists, Budapest, 2004.

SILVA, J. S. V. et al. Projeto GeoMS: cobertura vegetal e uso da terra do Estado de Mato Grosso do Sul. Campinas: Embrapa Informática Agropecuária, 2011. 64 p.

TAMIMINIA, H. et al. Google Earth Engine para aplicações de geo-big data: uma meta-análise e revisão sistemática. ISPRS Journal of Photogrammetry and Remote Sensing, v. 164, p. 152–170, 2020. DOI: https://doi.org/10.1016/j.isprsjprs.2020.04.001

VELASTEGUI-MONTOYA, A. et al. Google Earth Engine: uma análise global e tendências futuras. Sensoriamento Remoto, v. 15, n. 14, p. 3675, 2023. DOI: https://doi.org/10.3390/rs15143675. DOI: https://doi.org/10.3390/rs15143675

YU, L.; GONG, P. Google Earth como ferramenta de globo virtual para aplicações de ciências da Terra em escala global: progresso e perspectivas. International Journal of Remote Sensing, v. 33, p. 3966–3986, 2012. DOI: https://doi.org/10.1080/01431161.2011.636081

Published

2025-08-15

How to Cite

USABILITY OF THE GOOGLE EARTH ENGINE (GEE) TOOL FOR MONITORING AND COMBATING DEFORESTATION IN THE AMAZON REGION. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 15(1), 1-12. https://doi.org/10.61164/7dt9d641