ALTERNATIVE NON-HYDROMETALLURGICAL ROUTES FOR ELECTRIC ARC FURNACE DUST (EAFD) TREATMENT: A CRITICAL REVIEW

Authors

  • Antonio Clareti Pereira Universidade Federal de Minas Gerais - UFMG
  • José Rubens Dos Santos Universidade Presbiteriana Mackenzie
  • Jussara Vanessa de Freitas Silva Universidade Federal de Minas Gerais - UFMG

DOI:

https://doi.org/10.61164/zsf5jb13

Keywords:

Steelmaking dust, Pyrometallurgical routes, Stabilization, Industrial reuse, EAFD

Abstract

Electric arc furnace dust (EAFD) is a hazardous by-product from steel production in electric arc furnaces, characterized by a complex chemical composition and high concentrations of heavy metals such as zinc, lead, and iron. This review aims to critically evaluate the main non-hydrometallurgical treatment routes applied to EAFD, focusing on pyrometallurgical processes, thermal and physical treatments, and immobilization strategies such as stabilization/solidification (S/S). Illustrative flowcharts, comparative tables, and technical, environmental, and economic performance assessments are provided for each approach. The study also highlights emerging applications of EAFD in the construction materials industry, including its use in cement and sintered ceramics. Research gaps and future perspectives are discussed in light of industrial feasibility and environmental sustainability. This review offers a comprehensive overview of technological alternatives for the recovery or safe disposal of EAFD, prioritizing solutions aligned with the circular economy

Author Biographies

  • José Rubens Dos Santos, Universidade Presbiteriana Mackenzie

    Chemical engineer with over 30 years of experience in the areas of production, environment, and quality.

  • Jussara Vanessa de Freitas Silva, Universidade Federal de Minas Gerais - UFMG

    Engenheira de Minas. 1999. UFMG

    • Specialization in Sanitary Engineering and Environmental Technology, 2002 – Federal University of Minas Gerais (UFMG)

    • Specialization in Occupational Safety Engineering, 2007 – Federal University of Minas Gerais (UFMG

References

1. ABADI, M. M.; TANG, H.; RASHIDI, M. M. A review of simulation and numerical modeling of electric arc furnace (EAF) and its processes. Heliyon, v. 10, p. e32157, 2024. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1119056. Accessed on: Aug. 6, 2025. DOI: https://doi.org/10.1016/j.heliyon.2024.e32157

2. BADEA, D. O.; et al. A comparative study on the effectiveness of pollutants emitted from electric arc furnaces: dust particle characteristics and environmental impact assessment. Scientific Reports, v. 14, p. 1542, 2024. Available at: https://www.nature.com/articles/s41598-024-60817-w. Accessed on: Jan. 30, 2025.

3. BALÁŽ, M. Environmental mechanochemistry: recycling waste into materials using high energy ball milling. Cham: Springer Nature, 2021. Chapter “Metallurgical Waste”, p. 261–281. DOI: https://doi.org/10.1007/978-3-030-75224-8_8

4. BAYOUMI, R. A.; et al. Hybrid hydro-pyrometallurgical process for Zn recovery from electric arc furnace dust. Journal of Physics: Conference Series, v. 2068, p. 012030, 2022. DOI: https://doi.org/10.1088/1742-6596/2305/1/012009

5. CHERRAT, A.; DRIF, B.; ERRADI, E. M.; OUBAUOUZ, M.; EL ABDI, A. Valorization of electric arc furnace FTP dust from Morocco steel industry for efficient recovery of refined zinc via coal treatment. Process Safety and Environmental Protection, v. 181, p. 106961, 2025. DOI: 10.1016/j.psep.2025.106961. DOI: https://doi.org/10.1016/j.psep.2025.106961

6. CIFRIAN, E.; et al. Coal fly ash–clay based geopolymers incorporating electric arc furnace dust: environmental and geochemical behavior. Applied Sciences, v. 11, n. 2, p. 810, 2021. DOI: 10.3390/app11020810. DOI: https://doi.org/10.3390/app11020810

7. DERLON, M.; SOARES, C. A.; ALMEIDA, M. F. Recovery of iron from electric arc furnace dust by magnetic separation after reduction roasting. Separation and Purification Technology, v. 292, p. 121008, 2022.

8. GRUDINSKY, P.; et al. Pyrometallurgical processing of electric arc furnace dust: thermodynamic modeling and pilot-scale demonstration. Metals, v. 14, n. 2, p. 111–123, 2024.

9. GRUDINSKY, P.; et al. The Waelz slag from electric arc furnace dust processing: characterization and magnetic separation studies. Materials, v. 17, n. 10, p. 2224, 2024. DOI: 10.3390/ma17102224. DOI: https://doi.org/10.3390/ma17102224

10. GRUDINSKY, P.; PANKRATOV, D.; DYUBANOV, V.; MUSAELYAN, R.; PASECHNIK, L.; YURTAEVA, A. Characterization of calcination process of electric arc furnace dust with lime: a behavior of zinc, lead, and iron. Journal of Sustainable Metallurgy, v. 8, n. 3, p. 937–948, 2022. DOI: https://doi.org/10.1007/s40831-022-00599-5

11. GUO, M.; et al. Effect of calcination on physicochemical properties and leaching behavior of electric arc furnace dust. Journal of Cleaner Production, v. 260, p. 121101, 2020. DOI: 10.1016/j.jclepro.2020.121101. DOI: https://doi.org/10.1016/j.jclepro.2020.121101

12. GÜLCAN, M. F.; et al. Surface modification of electric arc furnace flue dust by mechanical activation combined with thermal treatment: a composite powder approach. Metallurgical and Materials Transactions B, v. 55, n. 4, p. 2026–2038, 2024. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC9579002/. Accessed on: Apr. 12, 2025.

13. HANSEN, B. K.; et al. Development of RHF technology for processing steelmaking dust in Asia. Journal of Sustainable Metallurgy, v. 6, n. 2, p. 225–236, 2020.

14. KHEBRI, Z.; RAZAVI, Z.; SADEGHIAN, F.; FAQHIHI, F.; AHMADIAN, N. A review of electric arc furnace dust (EAFD) reuse and recycle methods (waste from steel smelting and casting factories). Circular Economy and Sustainability, 2025. DOI: 10.1007/s43615-025-00543-1. DOI: https://doi.org/10.1007/s43615-025-00543-1

15. KIRANKUMAR, T.; ROY, G. G. A review on processing of electric arc furnace dust (EAFD) by pyro-metallurgical processes. Transactions of the Indian Institute of Metals, v. 75, p. 2629–2647, 2022. Available at: https://link.springer.com/article/10.1007/s12666-021-02465-6. Accessed on: Jul. 13, 2025. DOI: https://doi.org/10.1007/s12666-021-02465-6

16. KONDO, Y.; NAKAZAWA, Y.; SHIBUYA, T. Recovery of valuable metals from steelmaking by-products using a reducing hearth furnace. ISIJ International, v. 55, n. 3, p. 607–614, 2015.

17. LIU, X.; WANG, D.; LI, Z.; OUYANG, W.; BAO, Y.; GU, C. Efficient separation of iron elements from steel slag based on magnetic separation process. Journal of Materials Research and Technology, v. 23, p. 2362–2370, 2023. DOI: 10.1016/j.jmrt.2023.01.186. DOI: https://doi.org/10.1016/j.jmrt.2023.01.186

18. LIU, Y.; et al. Thermal reduction of EAF dust in RHF: effects of temperature and pellet composition. Journal of Cleaner Production, v. 380, p. 135000, 2022. DOI: https://doi.org/10.1016/j.jclepro.2022.135000

19. MENAD, N.; KANA, N.; KANARI, N.; PEREIRA, F.; SERNA, R. Process for enhancing the valuable metal recovery from “Electric Arc Furnace” (EAF) slags. Waste and Biomass Valorization, v. 12, n. 9, p. 4973–4984, 2021. DOI: https://doi.org/10.1007/s12649-021-01357-6

20. NOWIŃSKA, K.; ADAMCZYK, Z. Zinc and lead metallurgical slags as a potential source of metal recovery: a review. Materials, v. 16, n. 23, art. 7295, 2023. Available at: https://doi.org/10.3390/ma16237295. Accessed on: Aug. 7, 2025. DOI: https://doi.org/10.3390/ma16237295

21. PEREIRA, A. C.; FONSECA, R. B. C.; SANTOS, J. R. Steelmaking dust (EAF dust): composition, environmental challenges, and advances in recovery technologies. Revista Desenvolvimento & Meio Ambiente, v. 18, n. 70, p. 1–20, 2023. Available at: https://doi.org/10.55905/rdelosv18.n70-011. Accessed on: Aug. 7, 2025. DOI: https://doi.org/10.55905/rdelosv18.n70-011

22. RAMEZANI MOZIRAJI, M.; DEZVAREH, G. A.; EHTESHAMI, M.; SABOUR, M. R.; BAZARGAN, A. Life cycle assessment of gas-based EAF steel production: environmental impacts and strategies for footprint reduction. The International Journal of Life Cycle Assessment, v. 28, n. 12, p. 1–17, 2023. DOI: 10.1007/s11367-023-02230-5. DOI: https://doi.org/10.1007/s11367-023-02230-5

23. RASHAD, A. M.; KHAFAGA, S. A.; GHARIEB, M. Valorization of fly ash as an additive for electric arc furnace slag geopolymer cement. Construction and Building Materials, v. 294, art. 123570, 2021. DOI: 10.1016/j.conbuildmat.2021.123570. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123570

24. SABZI, J.; et al. Mechanical and durability properties of mortars replacing cement with EAFD, GGBFS, and marble waste up to 20 %. Applied Sciences, v. 11, n. 9, p. 4110, 2021. DOI: 10.3390/app11094110. Available at: https://www.mdpi.com/2076-3417/11/9/4110. Accessed on: May 5, 2025. DOI: https://doi.org/10.3390/app11094110

25. SHALABY, M. A.; ABD EL ALEEM, S. A.; EL DIDAMONY, H.; ALI, M. M. Preliminary study of recycled aggregate mortar for electric arc furnace dust encapsulation. Applied Sciences, v. 11, n. 20, p. 9525, 2021. DOI: 10.3390/app11209525. DOI: https://doi.org/10.3390/app11209525

26. SHI, X.; XU, L.; HUANG, K.; CHENG, F.; ZHA, Q.; ZHAO, M.; XIE, Y.; FANG, Z.; PAN, Y.; SUN, Y. Study on the mechanical properties and microstructure of soil stabilized with alkali activated slag–steel slag–silica fume. Journal of Testing and Evaluation, v. 53, n. 1, 2025. Available at: https://doi.org/10.1520/JTE20240254. Accessed on: Aug. 7, 2025. DOI: https://doi.org/10.1520/JTE20240254

27. THOTEMPUDI, K.; ROY, G. G. A review on processing of electric arc furnace dust (EAFD) by pyro-metallurgical processes. Transactions of the Indian Institute of Metals, v. 75, n. 2, p. 1101–1112, 2022. DOI: 10.1007/s12666-021-02465-6. DOI: https://doi.org/10.1007/s12666-021-02465-6

28. TRIFUNOVIĆ, V.; et al. Investigation of hazardous waste: a case study of electric arc furnace dust characterization. Hemija i Industrija, v. 76, n. 4, p. 237–249, 2022. DOI: 10.2298/HEMIND220609018T. DOI: https://doi.org/10.2298/HEMIND220609018T

29. WANG, J.; ZHANG, Y.; CUI, K.; ALGARNI, T. S. Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust – a review. Journal of Cleaner Production, v. 280, p. 124529, 2021. DOI: 10.1016/j.jclepro.2020.124529. DOI: https://doi.org/10.1016/j.jclepro.2021.126788

30. XIAO, X.; ZHANG, S.; SHER, F.; CHEN, J.; XIN, Y.; YOU, Z.; WEN, L.; HU, M.; QIU, G. A review on recycling and reutilization of blast furnace dust as a secondary resource. Journal of Sustainable Metallurgy, v. 7, n. 2, p. 340–357, 2021. DOI: 10.1007/s40831-021-00377-9. DOI: https://doi.org/10.1007/s40831-021-00377-9

31. XUE, Y.; LIU, X.; XU, C.; HAN, Y. Hydrometallurgical detoxification and recycling of electric arc furnace dust. International Journal of Minerals, Metallurgy and Materials, v. 30, n. 11, p. 2076–2094, 2023. Available at: https://link.springer.com/article/10.1007/s12613-023-2637-2. Accessed on: Feb. 21, 2023. DOI: https://doi.org/10.1007/s12613-023-2637-2

32. XU, Y.; LV, Y.; QIAN, C. Comprehensive multiphase visualization of steel slag and related research in cement: detection technology and application. Construction and Building Materials, v. 386, p. 131572, 2023. DOI: 10.1016/j.conbuildmat.2023.131572. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131572

33. YU, Y.; CUI, L.; ZHANG, L.; WANG, Y. Improvement of mechanochemical leaching of zinc oxide ore—Optimization of grinding parameters for basket grinder. Journal of Cleaner Production, v. 469, p. 140579, 2024. DOI: https://doi.org/10.1016/j.jclepro.2024.143132

34. ZHANG, D.; et al. Recovery of zinc from electric arc furnace dust by alkaline pressure leaching using iron as a reductant. Journal of Central South University, v. 28, p. 2701–2710, 2021. DOI: 10.1007/s11771-021-4719-5. DOI: https://doi.org/10.1007/s11771-021-4719-5

35. ZHANG, J.; et al. Characterization of physical and chemical properties of multi-source metallurgical dust and analysis of resource utilization pathways. Metals, v. 14, n. 12, p. 1378, 2024. DOI: 10.3390/met14121378. DOI: https://doi.org/10.3390/met14121378

36. ZHANG, Y.; LIU, B.; GU, X.; NEHDI, M. L.; ZHANG, L. V. Mechanochemical activation of iron ore tailing based ternary supplementary cementitious materials. Construction and Building Materials, v. 326, p. 126741, 2022. DOI: 10.2139/ssrn.4004685. DOI: https://doi.org/10.2139/ssrn.4004685

Downloads

Published

2025-08-15

How to Cite

ALTERNATIVE NON-HYDROMETALLURGICAL ROUTES FOR ELECTRIC ARC FURNACE DUST (EAFD) TREATMENT: A CRITICAL REVIEW. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 15(1), 1-29. https://doi.org/10.61164/zsf5jb13