USO DE MINERAÇÃO DE DADOS PARA DESCOBERTA DE CONHECIMENTO:
ESTUDO DE CASO DO VESTIBULAR DA UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI (UFVJM)
Keywords:
Mineração de Dados, - Descoberta de conhecimento, Regras de associação, AprioriAbstract
A Mineração de Dados (MD) une conhecimentos das áreas de Banco de Dados, Estatística e Inteligência Artificial com o objetivo de extração de conhecimento útil em bases de dados, cada vez maiores. Para isso, ela conta com diferentes técnicas que, quando aplicadas adequadamente, podem revelar conhecimentos de grande valia para a gestão do negócio. Diante disso, neste trabalho foram analisadas as bases de dados referentes aos anos de 2002 a 2009 do processo seletivo unificado da Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), com o objetivo de extração de conhecimento acerca do perfil socioeconômico dos candidatos (potenciais futuros alunos da instituição). Foi utilizado o algoritmo da MD Apriori, que implementa a extração de conhecimento através da obtenção de regras de associação. Os resultados obtidos comprovam a eficácia desta técnica para descoberta de conhecimento em grandes bases de dados, o que permitiu à universidade conhecer melhor o perfil socioeconômico dos candidatos no período mencionado.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Revista Multidisciplinar do Nordeste Mineiro

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista;
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista, desde que adpatado ao template do repositório em questão;
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
- Os autores são responsáveis por inserir corretamente seus dados, incluindo nome, palavras-chave, resumos e demais informações, definindo assim a forma como desejam ser citados. Dessa forma, o corpo editorial da revista não se responsabiliza por eventuais erros ou inconsistências nesses registros.
POLÍTICA DE PRIVACIDADE
Os nomes e endereços informados nesta revista serão usados exclusivamente para os serviços prestados por esta publicação, não sendo disponibilizados para outras finalidades ou a terceiros.
Obs: todo o conteúdo do trabalho é de responsabilidade do autor e orientador.
