ANIMAL BONE PROCESSING FOR A CIRCULAR BIOECONOMY: METHODS, PRODUCTS, APPLICATIONS, AND POLICY (2020–2025 REVIEW)
DOI:
https://doi.org/10.61164/0q52sj86Palavras-chave:
Animal Bones, hydroxyapatite, bone char, collagen, circular economyResumo
Animal bones are abundant co-products of the meat industry and a strategic source of calcium and phosphorus alongside valuable proteins (collagen/gelatin). This review synthesizes advances (2020–2025) across the full processing chain—from preparation and cleaning to four principal routes: (i) rendering to bone meal/flour for feed and slow-release fertilizers; (ii) calcination to bone ash with tunable hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP) and α-TCP for fertilizers and bioceramics; (iii) hydrothermal/chemical approaches for collagen/gelatin extraction and soluble phosphates (e.g., DCP/MCP); and (iv) biotechnological pathways, including phosphate-solubilizing microbes and hydrothermal treatment + anaerobic digestion with nutrient recovery. We consolidate operating windows (e.g., ~700–950 °C for HAp-rich ash; ~900–1050 °C for BCP; >1125 °C for α-TCP; 120–180 °C for subcritical-water extraction), decision points, and quality metrics (XRD/FTIR phase analysis, BET/porosity, citrate/NAC or DGT phosphorus availability, Bloom strength for gelatin). Industrial applications span agriculture (recycled P fertilizers), food (gelatin/collagen), biomedical (HAp/TCP biomaterials), and energy (bone char, biogas), with environmental and regulatory sections outlining sanitary safeguards (ABP categories, feed-ban rules) and EU fertilizer market entry (FPR/CMC pathways). We identify research gaps in harmonized QA/QC across routes, decision-grade LCA/TEA for electrified or intensified processing, field-scale agronomy for bone-derived P fertilizers, and regulatory interoperability to enable cross-border trade. Overall, bones represent a high-leverage circular feedstock; with fit-for-purpose processing and robust compliance, they can deliver environmental benefits, economic resilience, and advanced materials performance.
Referências
1. AAFCO — Association of American Feed Control Officials. Official Publication, Chapter 6 (ingredient definitions), 2024. Available at: https://www.aafco.org/ (accessed 17 Aug 2025).
2. ALATISHE, K.A.; IDOWU, O.K.; ALIMI, M. Allograft bone banking experience in Nigeria: a review of the first two years. The Pan African Medical Journal, v. 49, art. 105, 2024. DOI: https://doi.org/10.11604/pamj.2024.49.105.41103.
3. ALATISHE, K.A. et al. Allograft bone banking experience in Nigeria: a review. Nigerian Journal of Surgery, 2024. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC11907714. DOI: https://doi.org/10.11604/pamj.2024.49.105.41103
4. ALIBEKOV, R.S.; ALIBEKOVA, Z.I.; BAKHTYBEKOVA, A.R.; TAIP, F.S.; URAZBAYEVA, K.A.; KOBZHASAROVA, Z.I. Review of the slaughter wastes and the meat by-products recycling opportunities. Frontiers in Sustainable Food Systems, v. 8, 2024. DOI: https://doi.org/10.3389/fsufs.2024.1410640. DOI: https://doi.org/10.3389/fsufs.2024.1410640
5. AMIN, A.E.A.Z. Using Bone Char as a Renewable Resource of Phosphate Fertilizers. Journal of Soil Science and Plant Nutrition, 2024. DOI: 10.1007/s42729-024-02018-y. DOI: https://doi.org/10.1007/s42729-024-02018-y
6. ANGRAINI, N.; SYARIFUDDIN, S.; RAUF, N.; TAHIR, D. Advancements in Bone Tissue Engineering: A Comprehensive Review of Biomaterial Scaffolds and Freeze Drying Techniques. Artificial Organs, v. 49, n. 8, p. 1236–1248, 2025. DOI: https://doi.org/10.1111/aor.14976. DOI: https://doi.org/10.1111/aor.14976
7. BIH, N.L.; MAHAMAT, A.A.; CHINWEZE, C. et al. The effect of bone ash on the physio-chemical and mechanical properties of clay ceramic bricks. Buildings, v. 12, n. 3, 336, 2022. DOI: 10.3390/buildings12030336. DOI: https://doi.org/10.3390/buildings12030336
8. BÖHME, N.; HAUKE, K.; DOHRN, M.; NEUROTH, M.; GEISLER, T. High-temperature phase transformations of hydroxylapatite. Journal of Materials Science, v. 57, p. 15239-15266, 2022. DOI: https://doi.org/10.1007/s10853-022-07570-5. DOI: https://doi.org/10.1007/s10853-022-07570-5
9. BRASIL. Lei nº 12.305, de 2 de agosto de 2010 — Institui a Política Nacional de Resíduos Sólidos (PNRS). Brasília: Planalto. Planalto.
10. BRASIL. Decreto nº 10.936, de 12 de janeiro de 2022 — Regulamenta a PNRS. Brasília: Planalto. Planalto
11. BULINA, N.V.; AVAKYAN, L.A.; MAKAROVA, S.V.; OREHOV, I.B.; BYSTROV, V.S. Structural features of oxyapatite. Minerals, v. 13, n. 1, art. 102, 2023. DOI: https://doi.org/10.3390/min13010102. DOI: https://doi.org/10.3390/min13010102
12. CAÑON-DÁVILA, D.F.; CASTILLO-PAZ, A.M.; CORREA-PIÑA, B.A.; LONDOÑO-RESTREPO, S.M.; RAMIREZ-BON, R.; RODRIGUEZ-GARCIA, M.E. Influence of purification methods on extraction of nanocrystals. Ceramics International, v. 50, n. 21C, p. 44119-44131, 2024. DOI: https://doi.org/10.1016/j.ceramint.2024.08.260. DOI: https://doi.org/10.1016/j.ceramint.2024.08.260
13. CASP — Critical Appraisal Skills Programme. CASP Checklists, 2022–. Available at: https://casp-uk.net/casp-tools-checklists/. Accessed 17 Aug 2025.
14. CASTRO, G.F.; DUARTE, V.G.O.; BALLOTIN, F.C.; ROCHA, B.C.P.; REZENDE, I.F.; MATTIELLO, E.M.; VALE, L.P.R.; OLIVEIRA, G.S.; SILVA, R.C.; TRONTO, J. Bone char: characterization and agronomic application. Revista Brasileira de Ciência do Solo, v. 48, e0230165, 2024. DOI: 10.36783/18069657rbcs20230165. DOI: https://doi.org/10.36783/18069657rbcs20230165
15. CROCKER, D.B.; HERING, T.M.; AKKUS, O.; OEST, M.E.; RIMNAC, C.M. Dose-dependent effects of gamma radiation sterilization. Cell Tissue Bank, v. 25, n. 3, p. 735–745, 2024. DOI: https://doi.org/10.1007/s10561-024-10135. DOI: https://doi.org/10.1007/s10561-024-10135-2
16. DU, Q.Q.; ZHANG, S.; ANTONIETTI, M.; YANG, F. Sustainable leaching process of phosphates from animal bones. ACS Sustainable Chemistry & Engineering, v. 8, n. 26, p. 9775–9782, 2020. DOI: https://doi.org/10.1021/acssuschemeng.0c02233. DOI: https://doi.org/10.1021/acssuschemeng.0c02233
17. EFSA — European Food Safety Authority. Animal by-products: role and legislative changes. 2021. Available at: https://www.efsa.europa.eu/en/topics/animal-by-products.
18. EKNAPAKUL, T. et al. Structural complexity and calcination temperature on Ca-phosphates from fish bones. Heliyon, v. 10, e29665, 2024. DOI: 10.1016/j.heliyon.2024.e29665. DOI: https://doi.org/10.1016/j.heliyon.2024.e29665
19. ESPP/SAFOSO. Sanitary safety of animal by-product ash (Cat. 1). European Sustainable Phosphorus Platform, 2024. Available at: https://www.phosphorusplatform.eu.
20. ETINOSA, P.O.; OSUCHUKWU, O.A. Review of hydroxyapatite biomaterials from natural resources. Arabian Journal of Chemistry, v. 17, n. 12, art. 106010, 2024. DOI: https://doi.org/10.1016/j.arabjc.2024.106010. DOI: https://doi.org/10.1016/j.arabjc.2024.106010
21. EUROPEAN COMMISSION. Feed ban: Regulation (EU) 2021/1372. 2021. Available at: https://ec.europa.eu/newsroom/sante/items/718842/en.
22. EUROPEAN COMMISSION. Critical raw materials — EU policy and 2023 list (includes phosphate rock and phosphorus). Official page, 2023–2024. URL: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en.
23. EUROPEAN COMMISSION. A new Circular Economy Action Plan: For a cleaner and more competitive Europe (COM/2020/98 final). Brussels, 2020. Available at EUR-Lex. EUR-Lex
24. EUROPEAN COMMISSION. Regulation (EU) 2019/1009 on EU fertilising products (FPR). Official Journal L 170, 25 Jun 2019, p. 1–114. Available at EUR-Lex. EUR-Lex
25. EUROPEAN COMMISSION. Commission Delegated Regulation (EU) 2021/2086 adding precipitated phosphate salts and derivatives (CMC 12) to the FPR. Official Journal L 427, 30 Nov 2021. EUR-Lex
26. EUROPEAN COMMISSION. Commission Delegated Regulation (EU) 2021/2088 adding pyrolysis and gasification materials (CMC 14) to the FPR. Official Journal L 427, 30 Nov 2021. EUR-Lex
27. EUROPEAN COMMISSION. Regulation (EC) No 1069/2009 (Animal By-Products Regulation) — health rules for ABPs not intended for human consumption. Official Journal L 300, 14 Nov 2009. EUR-Lex
28. EUROPEAN COMMISSION. Commission Regulation (EU) No 142/2011 implementing Regulation (EC) No 1069/2009. Official Journal L 54, 26 Feb 2011. EUR-Lex
29. EUROPEAN COMMISSION. Commission Regulation (EU) 2021/1372 amending the feed ban to allow certain non-ruminant processed animal proteins in non-ruminant feed (cross-feeding, pigs↔poultry). Official Journal L 295, 18 Aug 2021. EUR-Lex
30. EUROPEAN COMMISSION JRC. RMIS factsheets — Phosphate rock (Critical Raw Material, 2023). URL: https://rmis.jrc.ec.europa.eu/rmp/Phosphate%20rock.
31. FDA. 21 CFR §589.2000 — Animal proteins prohibited in ruminant feed. Electronic Code of Federal Regulations (eCFR). eCFR.
32. FDA. 21 CFR §589.2001 — Cattle materials prohibited in animal food or feed (CMPAF). eCFR. eCFR
33. GARCÍA-TEN, J.; DONDI, M.; VIEIRA LISBOA, J.V.M.B.; VICENT CABEDO, M.; PÉREZ-VILLAREJO, L.; RAMBALDI, E.; ZANELLI, C. Critical raw materials in the ceramic industry. Open Ceramics, 2024. DOI: https://doi.org/10.1016/j.oceram.2024.100438.
34. HADIDI, M.; BAHLAOUAN, B.; BOUTALEB, F.; BENJELLOUN, G.R.; SILKINA, A.; EL ANTRI, S.; BOUTALEB, N. Anaerobic digestion of agroindustrial waste enriched with bone meal. Environmental Quality Management, v. 32, n. 4, p. 255–265, 2023. DOI: https://doi.org/10.1002/tqem.21988. DOI: https://doi.org/10.1002/tqem.21988
35. HART, A.; EBIUNDU, K.; PERETOMODE, E.; ONYEAKA, H.; NWABOR, O.F.; OBILEKE, K. Value-added materials recovered from waste bone biomass. RSC Advances, v. 12, n. 34, p. 22302–22330, 2022. DOI: https://doi.org/10.1039/D2RA03557J. DOI: https://doi.org/10.1039/D2RA03557J
36. HEYL, K.; GARSKE, B.; EKARDT, F. Using bone char as phosphate recycling fertiliser: an analysis of the new EU Fertilising Products Regulation. Environmental Sciences Europe, v. 35, art. 109, 2023. DOI: https://doi.org/10.1186/s12302-023-00819-z. DOI: https://doi.org/10.1186/s12302-023-00819-z
37. HONG, M.H.; PARK, S.; RYU, J.; LEE, H.; LEE, D.; BAEK, J.H.; RYOO, H.M.; KIM, H.W. Biomineralization of bone tissue. Biomaterials Research, v. 26, art. 41, 2022. DOI: https://doi.org/10.1186/s40824-022-00288-0. DOI: https://doi.org/10.1186/s40824-022-00288-0
38. HSU, T.L.; CHOU, P.Y.; CHEN, H.C.; CHANG, K.C.; LIN, S.S.; HSIEH, W.W.; TAI, N.S. Regenerative efficacy of scCO₂-derived bone allografts. Journal of Functional Biomaterials, v. 13, n. 4, art. 192, 2022. Available at: https://pubmed.ncbi.nlm.nih.gov/PMC9687147/.
39. IELO, I.; CALABRESE, G.; DE LUCA, G.; CONOCI, S. Recent advances in hydroxyapatite-based biocomposites. International Journal of Molecular Sciences, v. 23, n. 17, p. 9721, 2022. DOI: 10.3390/ijms23179721. DOI: https://doi.org/10.3390/ijms23179721
40. IRFA’Í, M.A.; SCHMAHL, W.W.; PUSPARIZKITA, Y.M.; MURYANTO, S.; PRIHANTO, A.; ISMAIL, R.; JAMARI, J.; BAYUSENO, A.P. Hydrothermally synthesized nanoscale carbonated hydroxyapatite with calcium carbonates derived from green mussel shell wastes. Journal of Molecular Structure, v. 1306, art. 137837, 15 jun. 2024. DOI: https://doi.org/10.1016/j.molstruc.2024.137837. DOI: https://doi.org/10.1016/j.molstruc.2024.137837
41. JAYAPRAKASH, S.; RAZEEN, Z.M.A.; KALA, S.M.J.; ARUN, S.; SARAVANAKUMAR, R.; PUGAZHENDHI, A.; GNANASEKARAN, L. Enriched characteristics of poultry collagen. International Journal of Biological Macromolecules, v. 273, art. 133004, 2024. DOI: https://doi.org/10.1016/j.ijbiomac.2024.133004. DOI: https://doi.org/10.1016/j.ijbiomac.2024.133004
42. JBI — Joanna Briggs Institute. Critical Appraisal Tools. 2020–. Available at: https://jbi.global/critical-appraisal-tools. Accessed 17 Aug. 2025.
43. JOY, J.M.; PADMAPRAKASHAN, A.; PRADEEP, A.; PAUL, P.T.; MANNUTHY, R.J.; MATHEW, S. A Review on Fish Skin Derived Gelatin: Elucidating the Gelatin Peptides—Preparation, Bioactivity, Mechanistic Insights, and Strategies for Stability Improvement. Foods, v. 13, n. 17, art. 2793, set. 2024. DOI: https://doi.org/10.3390/foods13172793 DOI: https://doi.org/10.3390/foods13172793
44. KATRILAKA, C.; KARIPIDOU, N.; PETROU, N.; MANGLARIS, C.; KATRILAKAS, G.; TZAVELLAS, A.N.; PITOU, M.; TSIRIDIS, E.E.; CHOLI PAPADOPOULOU, T.; AGGELI, A. Freeze drying process for fabrication of collagen sponges as medical devices. Materials (Basel), v. 16, n. 12, art. 4425, 2023. DOI: https://doi.org/10.3390/ma16124425. DOI: https://doi.org/10.3390/ma16124425
45. KHURSHID, Z.; ALFARHAN, M.F.; MAZHER, J.; BAYAN, Y.; COOPER, P.R.; DIAS, G.J.; ADANIR, N.; RATNAYAKE, J. Extraction of hydroxyapatite from camel bone. Molecules, v. 27, n. 22, art. 7946, 2022. DOI: https://doi.org/10.3390/molecules27227946. DOI: https://doi.org/10.3390/molecules27227946
46. KIANI, M.; YLIVAINIO, K. Methods for testing phosphorus fertilizing efficiency. Science of the Total Environment, v. 922, art. 170965, 2024. DOI: 10.1016/j.scitotenv.2024.170965. DOI: https://doi.org/10.1016/j.scitotenv.2024.170965
47. KOWALSKI, Z.; MAKARA, A.; GENEROWICZ, A.; CIUŁA, J. Improving quality of hydroxyapatite ashes from MBM combustion. Energies, v. 16, n. 16, art. 5911, 2023. DOI: https://doi.org/10.3390/en16165911. DOI: https://doi.org/10.3390/en16165911
48. KRIEGER, T.; TAILLEBOT, V.; MAUREL-PANTEL, A.; LALLEMAND, M.; EDORH, G.; OLLIVIER, M.; PITHIOUX, M. Supercritical CO₂ process effect on trabecular bone microarchitecture. Bone Reports, v. 26, art. 101859, 2025. DOI: https://doi.org/10.1016/j.bonr.2025.101859. DOI: https://doi.org/10.1016/j.bonr.2025.101859
49. LAURINI, B.; CANTISANI, N.; LEAL DA SILVA, W.R.; ZONG, Y.; JØRGENSEN, J.B. Electrification of clay calcination: a first look into dynamic modeling and energy management for integration with sustainable power grids. arXiv preprint, arXiv:2404.12695, 2024. Available from: https://arxiv.org/abs/2404.12695. Accessed on may 13 2025.
50. LECOMPTE, N.; CARATENUTO, A.; ZHENG, Y. Waste animal bone-derived calcium phosphate particles with high solar reflectance. arXiv, 2025. DOI: https://doi.org/10.48550/arXiv.2501.18130.
51. LESKOVAR, T.; JERMAN, I.; ZUPANIČ PAJNIČ, I. Intra-skeletal variability in human remains via ATR-FTIR. Vibrational Spectroscopy, v. 132, art. 103688, 2024. DOI: https://doi.org/10.1016/j.vibspec.2024.103688. DOI: https://doi.org/10.1016/j.vibspec.2024.103688
52. LI, J.; BAI, R.; CHEN, W.; REN, C.; YANG, F.; TIAN, X.; XIAO, X.; ZHAO, F. Efficient lead immobilization by bio beads with bone char. Journal of Hazardous Materials, v. 447, art. 130772, 2023. DOI: https://doi.org/10.1016/j.jhazmat.2023.130772. DOI: https://doi.org/10.1016/j.jhazmat.2023.130772
53. LI, X.; WANG, J.; DENG, Y.; LI, M.; XU, Y.; WANG, Q.; LIU, Y. Effect of nanoprocessing on bone powders. Food Science & Nutrition, v. 9, n. 8, p. 4426-4442, 2021. DOI: https://doi.org/10.1002/fsn3.2312. DOI: https://doi.org/10.1002/fsn3.2312
54. LIU, X.; LI, X.; HUA, Y.; SINKKONEN, A.; ROMANTSCHUK, M.; LV, Y.; WU, Q.; HUI, N. MBM stimulates microbial diversity in composting. Frontiers in Microbiology, v. 13, art. 953783, 2022. DOI: https://doi.org/10.3389/fmicb.2022.953783. DOI: https://doi.org/10.3389/fmicb.2022.953783
55. LU, X.K.; ZHANG, W.; RUGGIERO, B.N.; SEITZ, L.C.; LI, J. Scalable electrified cementitious materials production and recycling. Energy & Environmental Science, v. 17, p. 9566-9579, 2024. DOI: https://doi.org/10.1039/D4EE03529A. DOI: https://doi.org/10.1039/D4EE03529A
56. MACAVEI, M.G.; GHEORGHE, V.C.; IONESCU, G.; VOLCEANOV, A.; PĂTRAȘCU, R.; MĂRCULESCU, C.; MAGDZIAŘZ, A. Thermochemical Conversion of Animal Derived Waste: A Mini Review with a Focus on Chicken Bone Waste. Processes, v. 12, n. 2, art. 358, fev. 2024. DOI: https://doi.org/10.3390/pr12020358. DOI: https://doi.org/10.3390/pr12020358
57. MÉNDEZ-LOZANO, N.; PÉREZ-RAMÍREZ, E.E.; DE LA LUZ-ASUNCIÓN, M. Microwave-assisted hydrothermal synthesis of hydroxyapatite flakes as substrates for titanium dioxide film deposition. Ceramics, v. 7, n. 2, p. 735–742, 2024. DOI: https://doi.org/10.3390/ceramics7020048 DOI: https://doi.org/10.3390/ceramics7020048
58. NADAGOUDA, Mallikarjuna N.; VARSHNEY, Gaiven; VARSHNEY, Vikas; HEJASE, Charifa A. Recent Advances in Technologies for Phosphate Removal and Recovery: A Review. ACS Environmental Au, v. 4, n. 6, p. 271–291, 11 set. 2024. DOI: https://doi.org/10.1021/acsenvironau.3c00069. DOI: https://doi.org/10.1021/acsenvironau.3c00069
59. NAPOLITANO, M.; BIANCHI, L.; MARANI, F.; GALLINA, G.; DE MATTIA, D. High-efficiency fertilization system from waste streams (bone-meal HA). Materials, v. 18, n. 15, art. 3492, 2025. DOI: https://doi.org/10.3390/ma18153492. DOI: https://doi.org/10.3390/ma18153492
60. NGO, K.N.; LE, K.Q.; HUYNH, L.H.; NGUYEN, V.D.; NGUYEN, V.N.H.; HO, Q.P. Production of dicalcium phosphate from Nile Tilapia bone. CTU Journal of Innovation and Sustainable Development, v. 17, p. 69–74, 2025. DOI: https://doi.org/10.22144/ctujoisd.2025.00. DOI: https://doi.org/10.22144/ctujoisd.2025.009
61. NIKOLENKO, M.V.; VASYLENKO, K.V.; MYRHORODSKA, V.D.; KOSTYNIUK, A.; LIKOZAR, B. Synthesis of calcium orthophosphates by precipitation. Processes, v. 8, n. 9, art. 1009, 2020. DOI: https://doi.org/10.3390/pr8091009. DOI: https://doi.org/10.3390/pr8091009
62. OKPE, P.C.; FOLORUNSO, O.; AIGBODION, V.S.; OBAYI, C. Hydroxyapatite synthesis from waste animal bones. Journal of Biomedical Materials Research Part B, v. 112, e35440, 2024. DOI: 10.1002/jbm.b.35440. DOI: https://doi.org/10.1002/jbm.b.35440
63. PAGE, M.J.; McKENZIE, J.E.; BOSSUYT, P.M.; BOUTRON, I.; HOFFMANN, T.C.; MULROW, C.D.; SHAMSEER, L.; TETZLAFF, J.M.; AKL, E.A.; BRENNAN, S.E.; CHOU, R.; GLANVILLE, J.; GRIMSHAW, J.M.; HRÓBJARTSSON, A.; LALU, M.M.; LI, T.; LODER, E.W.; MAYO-WILSON, E.; McDONALD, S.; McGUINNESS, L.A.; STEWART, L.A.; THOMAS, J.; TRICCO, A.C.; WELCH, V.A.; WHITING, P.; MOHER, D. The PRISMA 2020 statement: updated guideline. BMJ, v. 372, n. 71, 2021. DOI: 10.1136/bmj.n71. DOI: https://doi.org/10.1136/bmj.n71
64. PAGE, M.J.; McKENZIE, J.E.; BOSSUYT, P.M.; et al. PRISMA 2020 explanation and elaboration. BMJ, v. 372, n. 160, 2021. DOI: https://doi.org/10.1136/bmj.n160. DOI: https://doi.org/10.1136/bmj.n160
65. PALOMINO-GUZMÁN, E.R.; GONZÁLEZ-LÓPEZ, A.; OLMEDO-MONTOYA, J.; SÁNCHEZ-ECHEVERRI, L.A.; TOVAR PERILLA, N.J. Using beef and pig bone waste in concrete. Sustainability, v. 16, n. 2, art. 701, 2024. DOI: https://doi.org/10.3390/su16020701. DOI: https://doi.org/10.3390/su16020701
66. PICCIRILLO, C. Preparation, characterisation and applications of bone char. Journal of Environmental Management, v. 339, p. 117896, 2023. DOI: https://doi.org/10.1016/j.jenvman.2023.117896. DOI: https://doi.org/10.1016/j.jenvman.2023.117896
67. PIASH, M.I.; UEMURA, K.; ITOH, T.; IWABUCHI, K. Meat and bone meal biochar reduces fertilizer needs. Journal of Environmental Management, v. 336, 117612, 2023. DOI: 10.1016/j.jenvman.2023.117612. DOI: https://doi.org/10.1016/j.jenvman.2023.117612
68. PHON, S.; PRADANA, A.L.; THANASUPSIN, S.P. Recovery of collagen/gelatin from fish waste with CO₂. Recycling, v. 8, n. 2, art. 30, 2023. DOI: https://doi.org/10.3390/recycling8020030. DOI: https://doi.org/10.3390/recycling8020030
69. RAVAZZANO, L.; COLAIANNI, G.; TARAKANOVA, A.; XIAO, Y.B.; GRANO, M.; LIBONATI, F. Multiscale analysis of aging in bone. npj Aging, v. 10, art. 28, 2024. DOI: https://doi.org/10.1038/s41514-024-00156-2. DOI: https://doi.org/10.1038/s41514-024-00156-2
70. RETHLEFSEN, M.L.; KIRTLEY, S.; WAFFENSCHMIDT, S.; AYALA, A.P.; MOHER, D.; PAGE, M.J.; KOFFEL, J.B. PRISMA-S: extension for literature searches. Systematic Reviews, v. 10, art. 39, 2021. DOI: https://doi.org/10.1186/s13643-020-01542-z. DOI: https://doi.org/10.1186/s13643-020-01542-z
71. ROBINSON, J.S.; LEINWEBER, P. Effects of pyrolysis and incineration on phosphorus fertilizer potential. Waste Management, v. 172, p. 358–367, 2023. DOI: 10.1016/j.wasman.2023.10.012. DOI: https://doi.org/10.1016/j.wasman.2023.10.012
72. SAMATRA, M.Y.; MOHD NOOR, N.Q.I.; MOHAMAD RAZALI, U.H.; BAKAR, J.; MD SHAARANI, S. Bovidae-based gelatin: extraction methods, properties and applications. Comprehensive Reviews in Food Science and Food Safety, v. 21, n. 4, p. 3153–3176, 2022. DOI: https://doi.org/10.1111/1541-4337.12967. DOI: https://doi.org/10.1111/1541-4337.12967
73. SARRIÓN, A.; IPIALES, R.P.; DE LA RUBIA, M.Á.; MOHEDANO, Á.F.; DÍAZ, E. Chicken meat and bone meal valorization by hydrothermal treatment and anaerobic digestion. Renewable Energy, v. 204, p. 652–660, 2023. DOI: https://doi.org/10.1016/j.renene.2023.01.005. DOI: https://doi.org/10.1016/j.renene.2023.01.005
74. SHAH, F.A. Revisiting the physical and chemical nature of the mineral component of bone. Acta Biomaterialia, v. 196, p. 1-16, 2025. DOI: https://doi.org/10.1016/j.actbio.2025.01.055. DOI: https://doi.org/10.1016/j.actbio.2025.01.055
75. SHIN, M.; PELLETIER, M.H.; LOVRIC, V.; WALSH, W.R.; MARTENS, P.J.; KRUZIC, J.J.; GLUDOVATZ, B. Effect of gamma irradiation and scCO₂ sterilization on cortical bone. Journal of Biomedical Materials Research Part B: Applied Biomaterials, v. 112, n. 1, e35356, 2024. DOI: https://doi.org/10.1002/jbm.b.35356. DOI: https://doi.org/10.1002/jbm.b.35356
76. ŠROMOVÁ, V.; SOBOLA, D.; KASPAR, P. A brief review of bone cell function and importance. Cells, v. 12, n. 21, p. 2576, 2023. DOI: 10.3390/cells12212576. DOI: https://doi.org/10.3390/cells12212576
77. TADESSE, S.A.; EMIRE, S.A.; BAREA, P.; ILLERA, A.E.; MELGOSA, R.; BELTRÁN, S.; SANZ, M.T. Valorization of ray-finned fish by subcritical water hydrolysis. Foods, v. 13, n. 10, art. 1462, 2024. DOI: https://doi.org/10.3390/foods13101462. DOI: https://doi.org/10.3390/foods13101462
78. TAUQEER, H.M.; BASHARAT, Z.; RAMZANI, P.M.A.; FARHAD, M.; LEWIŃSKA, K.; TURAN, V.; KARCZEWSKA, A.; KHAN, S.A.; FARAN, G.E.; IQBAL, M. Aspergillus niger-mediated release of phosphates from fish bone char. Environmental Pollution, v. 313, art. 120064, 2022. DOI: https://doi.org/10.1016/j.envpol.2022.120064. DOI: https://doi.org/10.1016/j.envpol.2022.120064
79. TRZASKOWSKA, M.; VIVCHARENKO, V.; PRZEKORA, A. Impact of hydroxyapatite sintering temperature. International Journal of Molecular Sciences, v. 24, n. 6, art. 5083, 2023. DOI: https://doi.org/10.3390/ijms2406508. DOI: https://doi.org/10.3390/ijms24065083
80. VENKATESAN, J.; ANCHAN, R.V.; MURUGAN, S.S.; ANIL, S.; KIM, S.K. Natural hydroxyapatite-based nanobiocomposites and biomaterial-to-cell interaction. Discover Nano, v. 19, art. 169, 2024. DOI: https://doi.org/10.1186/s11671-024-04119-0. DOI: https://doi.org/10.1186/s11671-024-04119-0
81. VERMEIREN, J.; DILISSEN, N.; GOOVAERTS, V.; VLEUGELS, J. Electrification of clinker and calcination treatments in the cement sector by microwave technology – a review. Construction and Building Materials, v. 428, art. 136271, 2024. DOI: https://doi.org/10.1016/j.conbuildmat.2024.136271 DOI: https://doi.org/10.1016/j.conbuildmat.2024.136271
82. WINGENDER, B.; AZUMA, M.; KRYWKA, C.; ZASLANSKY, P.; BOYLE, J.; DEYMIER, A. Carbonate substitution affects carbonated apatites. Acta Biomaterialia, v. 122, p. 377–386, 2021. DOI: 10.1016/j.actbio.2021.01.002. DOI: https://doi.org/10.1016/j.actbio.2021.01.002
83. WOAH (World Organisation for Animal Health). Terrestrial Animal Health Code, Chapter 11.4 — Bovine Spongiform Encephalopathy (BSE). 2024 edition. WOAH
84. WU, E.; HUANG, L.; SHEN, Y.; WEI, Z.; LI, Y.; WANG, J.; CHEN, Z. Application of gelatin based composites in bone tissue engineering. Heliyon, v. 10, n. 16, art. e36258, 14 ago. 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e36258. DOI: https://doi.org/10.1016/j.heliyon.2024.e36258
85. XU, S.; ZHAO, Y.; SONG, W.; ZHANG, C.; WANG, Q.; LI, R.; SHEN, Y.; GONG, S.; LI, M.; SUN, L. Extraction and bioactivity of collagen peptides from by-products. Foods, v. 12, n. 10, art. 1965, 2023. DOI: https://doi.org/10.3390/foods12101965. DOI: https://doi.org/10.3390/foods12101965
86. YU, K.; XIONG, H.; WEI, X.; WANG, D.; SUN, D.; WANG, X.; CHENG, H. Chronological age estimation from occipital bone by FTIR and Raman. Bioinorganic Chemistry and Applications, v. 2022, art. 1729131, 2022. DOI: https://doi.org/10.1155/2022/1729131. DOI: https://doi.org/10.1155/2022/1729131
87. ZHANG, H.; LIU, H.; QI, L.; XU, X.; LI, X.; GUO, Y.; JIA, W.; ZHANG, C.; RICHEL, A. Steam explosion treatment on collagen peptide extraction. Innovative Food Science & Emerging Technologies, v. 85, art. 103336, 2023. DOI: https://doi.org/10.1016/j.ifset.2023.103336. DOI: https://doi.org/10.1016/j.ifset.2023.103336
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Revista Multidisciplinar do Nordeste Mineiro

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.