IDENTIFICATION AND EVALUATION OF SECONDARY METABOLITES IN Acmella oleracea (L.) R.K. JANSEN (ASTERACEAE) EXTRACTS USING ESI-MS

Autores

  • Paulo Alexandre Lima Santiago Universidade do Estado do Amazonas
  • Sarah Raquel Silveira da Silva Santiago Secretaria de Estado de Educação do Amazonas (SEDUC)

DOI:

https://doi.org/10.61164/16yfvs11

Palavras-chave:

Acmella oleracea, Natural antioxidants, Mass spectrometry, Glycosylated flavonoids

Resumo

This study aimed to evaluate the antioxidant activity and characterize the chemical constituents of the hydroalcoholic extract of Acmella oleracea (jambu), with a focus on the different parts of the plant. The analysis was conducted using electrospray ionization mass spectrometry (ESI-MS) in both positive and negative ionization modes, along with the DPPH free radical scavenging assay to assess antioxidant activity. The results showed that the stem extract exhibited the highest antioxidant capacity among the parts analyzed, with significantly lower EC₅₀ values (0.03 µg/mL) compared to the standard (gallic acid – 3.3 µg/mL), indicating strong efficacy in neutralizing free radicals. Antioxidant activity decreased proportionally with concentration, with the stem maintaining superior performance across all tested levels. Mass spectrometry revealed a wide diversity of secondary metabolites. In positive ion mode, glycosylated flavonoids were predominant, including kaempferol 3-rutinoside-7-glucoside (m/z 753), kaempferol 3-rutinoside-7-arabinose (m/z 711), kaempferol 3-methoxy-7-O-glucoside (m/z 475), and kaempferol 3-O-arabinose-7-methoxy (m/z 433), in addition to free kaempferol (m/z 287). The ion at m/z 391 was attributed to derivatives of alkylamides or oxygenated terpenoids. In negative mode, highly polar compounds were detected, such as hydrolyzable tannins (m/z 787), conjugated phenolic acids (m/z 577), glycosylated flavonoids (m/z 751), ellagic acid derivatives (m/z 709), and modified triterpenoids (m/z 563), all known for their bioactive properties. These findings reinforce the pharmacological potential of jambu as a natural source of antioxidants, with promising applications in the pharmaceutical, cosmetic, and nutraceutical industries.

Referências

BORGES, L. S. et al. Jambu - Hortaliça Amazônica tem demanda garantida. Campo & Negócios – Hortifrúti, edição 165, p. 26–27, 2019.

BORGES, L. et al. Exportação de nutrientes em plantas de jambu sob diferentes adubações. Semina: Ciências Agrárias, Londrina, v. 34, n. 1, p. 107–116, 2013. DOI: https://doi.org/10.5433/1679-0359.2013v34n1p107

CHOUDHARY, R. K. et al. N-alkylamides from Acmella oleracea: recent advances and pharmacological relevance. Journal of Ethnopharmacology, v. 273, p. 113976, 2021. https://doi.org/10.1016/j.jep.2021.113976 DOI: https://doi.org/10.1016/j.jep.2021.113976

DA SILVA, D. A. et al. Spilanthol and derivatives from Acmella oleracea: Therapeutic perspectives and molecular mechanisms. Biomedicine & Pharmacotherapy, v. 156, p. 113849, 2023. https://doi.org/10.1016/j.biopha.2022.113849 DOI: https://doi.org/10.1016/j.biopha.2022.113849

DHANANI, T.; SHAH, S.; KUMAR, S. Profiling of phenolic compounds and triterpenes using LC-MS. Journal of Chromatographic Science, v. 53, p. 871–879, 2015. https://doi.org/10.1093/chromsci/bmu096 DOI: https://doi.org/10.1093/chromsci/bmu096

FECKA, I.; KUCHARSKA, A. Z.; KOWALCZYK, A. Identification of ellagic acid derivatives in plant extracts. Phytochemical Analysis, v. 26, p. 28–35, 2015. https://doi.org/10.1002/pca.2570 DOI: https://doi.org/10.1002/pca.2570

GILBERT, B.; ALVES, L. F.; FAVORETO, R. F. Acmella oleracea. In: Monografias de Plantas Medicinais Brasileiras e Aclimatadas: Volume II. Rio de Janeiro: Abifisa; Editora FIOCRUZ, 2022. p. 17–36. https://doi.org/10.7476/9786557081778.0003 DOI: https://doi.org/10.7476/9786557081778.0003

GOMES, J. et al. Determinação fitoquímica e avaliação do fator de proteção solar das espécies Acmella oleracea e Cipura paludosa. Brazilian Journal of Development, v. 8, n. 5, p. 40314–40325, 2022. DOI: https://doi.org/10.34117/bjdv8n1-138

GRAYER, R. J. et al. Characterisation of glycosides in Phleum pratense using LC-MS. Phytochemical Analysis, v. 11, p. 257–267, 2000. DOI: https://doi.org/10.1002/1099-1565(200007/08)11:4<257::AID-PCA521>3.0.CO;2-A

HARBORNE, J. B.; WILLIAMS, C. A. 6-Hydroxyflavones and other flavonoids of Crocus. Zeitschrift für Naturforschung C, v. 39, n. 1, p. 204–209, 1984. https://doi.org/10.1515/znc-1984-1-204 DOI: https://doi.org/10.1515/znc-1984-1-204

JERÔNIMO, L. B. et al. Acmella oleracea essential oils: chemical composition, antioxidant, and cytotoxic activities. Biochemical Systematics and Ecology, v. 112, p. 104775, 2024. DOI: https://doi.org/10.1016/j.bse.2023.104775

JUSTESEN, U. Negative APCI-MS for characterization of flavonoids in fresh herbs. Journal of Chromatography A, v. 903, p. 15–24, 2000.

KALPOUTZAKIS, E. et al. Phenolics and antioxidant activity of Mediterranean plants. Plants, v. 12, n. 5, p. 1092, 2023. https://doi.org/10.3390/plants12051092 DOI: https://doi.org/10.3390/plants12051092

MEURER, E. C. Espectrometria de massas para iniciantes. São Paulo: Blucher, 2020. DOI: https://doi.org/10.18366/ecme.1202.2020

MI, Y. et al. Profiling and multicomponent analysis of Panzerina lanata. Journal of Separation Science, v. 44, n. 9, p. 1778–1791, 2021. DOI: https://doi.org/10.1002/jssc.202000944

NAKAJIMA, J. Acmella in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro, 2020. https://floradobrasil2020.jbrj.gov.br/FB15913

NAKATANI, N.; NAGASHIMA, M. Alcamidas pungentes de Spilanthes acmella. Biosci., Biotechnol., Biochem., p. 759–762, 1992. DOI: https://doi.org/10.1271/bbb.56.759

NUNES, K. D. N. M. Processamento térmico e estádio fenológico na atividade antioxidante do jambu. Tese (Doutorado) – UNESP, Faculdade de Ciências Agronômicas, Botucatu, 2016.

PINHEIRO, M. S. S. et al. Potencial anti-herpético e anti-inflamatório de extratos de Acmella oleracea. EPG - Unifesspa, 2020.

PINHEIRO, M. T. *Avaliação fitoquímica e da atividade antioxidante, citotóxica, inseticida e repelente de extratos vegetais das folhas de Acmella oleracea. Tese (Doutorado em Biodiversidade e Biotecnologia) – Universidade Federal do Amapá, 2016.

POP, R. M. et al. UHPLC/PDA–ESI/MS analysis of flavonol glycosides from Hippophaë rhamnoides. Phytochemical Analysis, v. 24, n. 6, p. 580–590, 2013. https://doi.org/10.1002/pca.2460 DOI: https://doi.org/10.1002/pca.2460

RENAI, L. et al. Triterpenes and phenolic acids profiling using LC-QTOF-MS. Antioxidants, v. 10, n. 5, 2021. https://doi.org/10.3390/antiox10050704 DOI: https://doi.org/10.3390/antiox10050704

RHIFFRIH, B. et al. Analysis of pentacyclic triterpenes by LC–MS: APCI vs APPI. Journal of Mass Spectrometry, v. 44, p. 103–112, 2009.

RODRIGUES, E. T. Avaliação do extrato bruto etanólico das flores de Acmella oleracea na prevenção da hiperplasia benigna da próstata. Dissertação (Mestrado) – Universidade Federal do Amapá, 2021.

ROMÃO, N. F. et al. Análise fitoquímica e potencial antioxidante do extrato das flores de Spilanthes acmella. South American Journal of Basic Education, Technical and Technological, p. 23–32, 2015.

RUIZ, A. et al. Polyphenols and antioxidant activity of Berberis microphylla. Journal of Agricultural and Food Chemistry, v. 58, p. 6081–6089, 2010. https://doi.org/10.1021/jf100173x DOI: https://doi.org/10.1021/jf100173x

SALIH, E. Y. A. et al. Identification of phenolic acids and triterpenoids in plant extracts. Biomedicine & Pharmacotherapy, v. 138, p. 112442, 2021. https://doi.org/10.1016/j.biopha.2021.112442 DOI: https://doi.org/10.1016/j.biopha.2021.112442

SILVA, M. O.; INNECO, R. Germinação de sementes de jambu (Acmella oleracea) sob influência de fotoperíodo e temperatura. Revista Eletrônica de Biologia (REB), 2013.

SINGH, D. et al. Alkylamides: Chemistry, classification, and bioactivities. Phytochemistry Reviews, v. 20, p. 881–909, 2021. https://doi.org/10.1007/s11101-021-09740-3 DOI: https://doi.org/10.1007/s11101-020-09725-1

SNOOK, M. E. et al. Fragmentation of O-glycosides in Nicotiana species. Phytochemistry, v. 31, n. 8, p. 2673–2676, 1992. https://doi.org/10.1016/0031-9422(92)83120-N DOI: https://doi.org/10.1016/0031-9422(92)83120-N

STEIN, R. et al. Chymase inhibition: anti-inflammatory effects of Acmella oleracea. Journal of Ethnopharmacology, v. 268, p. 113610, 2021. https://doi.org/10.1016/j.jep.2020.113610 DOI: https://doi.org/10.1016/j.jep.2020.113610

TOLONEN, A. et al. LC-APCI analysis of Rhodiola rosea. Journal of Mass Spectrometry, v. 38, p. 752–759, 2003. DOI: https://doi.org/10.1002/jms.497

VAN BREEMEN, R. B. et al. LC-MS of carotenoids using APCI. Journal of Mass Spectrometry, v. 31, p. 975–982, 1996. DOI: https://doi.org/10.1002/(SICI)1096-9888(199609)31:9<975::AID-JMS380>3.0.CO;2-S

WEINTRAUB, L. et al. Antioxidant activity of Acmella species. The FASEB Journal, v. 34, S1, p. 1, 2020. DOI: https://doi.org/10.1096/fasebj.2020.34.s1.06660

ZHOU, S.; HAMBURGER, M. LC-MS optimization for natural product analysis. Journal of Chromatography A, v. 749, p. 141–150, 1996.

Publicado

2025-09-15

Como Citar

IDENTIFICATION AND EVALUATION OF SECONDARY METABOLITES IN Acmella oleracea (L.) R.K. JANSEN (ASTERACEAE) EXTRACTS USING ESI-MS. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 17(1), 1-18. https://doi.org/10.61164/16yfvs11