EXTRACTION OF BIOPRODUCTS FROM MICROALGAE: A REVIEW OF METHODOLOGIES AND SCALE-UP STRATEGIES
DOI:
https://doi.org/10.61164/sgdfdc52Palabras clave:
Biocomposites, Green solvents, Biological reactors, Integrated processesResumen
This study aimed to review bioproduct extraction methodologies from microalgae, with a focus on sustainable alternatives and scale-up strategies for industrial applications. An integrative literature review was conducted across national and international scientific databases, focusing on publications from 2021 onward. Microalgae stand out for their high biotechnological potential, producing high-value compounds such as pigments, polyunsaturated fatty acids, and polysaccharides, and have shown feasibility in wastewater treatment processes. Among the analyzed methodologies, microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), and ultrasound-assisted extraction (UAE) were highlighted, especially when combined with green solvents, as more efficient and environmentally safe alternatives. Critical parameters influencing yield, such as liquid-to-solid ratio, temperature, power, and extraction time, were discussed. Regarding scale-up, techniques such as hydrodynamic cavitation, high-pressure microfluidization, and photobioreactor use were emphasized for their potential to optimize biomass productivity and quality. It is concluded that integrating efficient cultivation processes, intensifying extraction, and applying sustainable technologies is essential to economically enabling large-scale microalgae bioproduct production, thereby advancing the bioeconomy and circular economy.
Descargas
Referencias
ANDRADE, D. et al. Continental water microalgae: cultivation potentialities and challenges. 2014. Available at: https://archivum.grupomarista.org.br/pergamumweb/vinculos//00005b/00005b30.pdf. Accessed: Jul. 22, 2025.
ARBIB, Z. et al. Capacity of different microalgae species for phytoremediation processes: tertiary treatment of wastewater, CO₂ biofixation, and low-cost biofuel production. Water Research, v. 49, p. 465–474, 2014. Available at: https://doi.org/10.1016/j.watres.2013.10.036. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.watres.2013.10.036
BHATTACHARYA, M.; GOSWAMI, S. Microalgae – A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology, v. 25, p. 101580, 2020. ISSN 1878-8181. Available at: https://doi.org/10.1016/j.bcab.2020.101580. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.bcab.2020.101580
CASSANI, L. et al. Phytochemical compounds with promising biological activities from Ascophyllum nodosum extracts using microwave-assisted extraction. Food Chemistry, v. 438, p. 138037, 2024. Available at: https://doi.org/10.1016/j.foodchem.2023.138037. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.foodchem.2023.138037
CHEGUKRISHNAMURTHI, M. et al. Hydrodynamic cavitation mediated Spirulina valorisation with insights into phycocyanin extraction and biogas production. Communications Biology, v. 8, n. 1, p. 326, 2025. Available at: https://doi.org/10.1038/s42003-025-07702-y. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1038/s42003-025-07702-y
CHEN, X. et al. Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultivated in a novel membrane photobioreactor. Biotechnology for Biofuels, v. 11, p. 190, 2018. Available at: https://doi.org/10.1186/s13068-018-1190-0. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1186/s13068-018-1190-0
CHOKSHI, K. et al. Biofuel potential of the microalga Acutodesmus dimorphus under oxidative stress induced by temperature. Bioresource Technology, v. 180, p. 162–171, 2015. Available at: https://doi.org/10.1016/j.biortech.2014.12.102. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.biortech.2014.12.102
DEMAMAN ORO, C. E. et al. Process intensification approaches applied to the extraction of microalgae-based molecules. In: GAGNON, Y.; JACOB-LOPES, E.; ZEPKA, L. Q.; DEPRÁ, M. C. (eds.). Algal bioreactors. Woodhead Series in Bioenergy. 1st ed. Amsterdam: Elsevier Science Ltd, 2025. p. 323–329. ISBN 978-0-443-14059-4. Available at: https://doi.org/10.1016/B978-0-443-14059-4.00010-6. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/B978-0-443-14059-4.00010-6
DU, S. et al. Oxidative stress responses in two marine diatoms during acute exposure to n-butyl acrylate and ecotoxicological assessment using the IBRv2 index. Ecotoxicology and Environmental Safety, v. 240, p. 113686, 2022. Available at: https://doi.org/10.1016/j.ecoenv.2022.113686. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.ecoenv.2022.113686
EZEILO, U. R.; WAHAB, R. A.; MAHAT, N. A. Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid-state fermentation. Renewable Energy, v. 156, p. 1301–1312, 2020. Available at: https://ui.adsabs.harvard.edu/abs/2020REne..156.1301E/abstract. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.renene.2019.11.149
GANI, P. et al. Effects of different culture conditions on the efficiency of phytoremediation of domestic wastewater. Journal of Environmental Chemical Engineering, v. 4, p. 4744–4753, 2016. Available at: https://doi.org/10.1016/j.jece.2016.11.008. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.jece.2016.11.008
HABEEBULLAH, K. et al. Enzyme-assisted extraction of bioactive compounds from brown seaweeds and characterization. Journal of Applied Phycology, v. 32, n. 1, p. 615–629, 2020. Available at: https://link.springer.com/article/10.1007/s10811-019-01906-6. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1007/s10811-019-01906-6
HASHEMI, B. et al. Green solvents and approaches have recently applied for extraction of natural bioactive compounds. TrAC Trends in Analytical Chemistry, v. 157, p. 116732, 2022. Available at: https://doi.org/10.1016/j.trac.2022.116732. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.trac.2022.116732
IRIBARNEGARAY, M. A. et al. Management challenges for more decentralized treatment and reuse of domestic wastewater in metropolitan areas. Journal of Water, Sanitation and Hygiene for Development, v. 8, p. 113–122, 2018. Available at: https://doi.org/10.2166/washdev.2017.092. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.2166/washdev.2017.092
JACOB-LOPES, E. (ed.). Algal bioreactors: scale-up, economics, and sustainability. Vol. 2. 1st ed. Amsterdam: Elsevier, 2025. (Advances in Algal Biology and Biotechnology). ISBN 978-0-443-14059-4. Available at: https://www.sciencedirect.com/book/9780443140594/algal-bioreactors. Accessed: Aug. 4, 2025.
JESUS, B. C. et al. Valorisation of Sargassum muticum through the extraction of phenolic compounds using eutectic solvents and intensification techniques. RSC Sustainability, v. 1, n. 5, p. 1245–1258, 2023. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/su/d3su00051f. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1039/D3SU00051F
JHA, A. K.; SIT, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends in Food Science & Technology, v. 119, p. 579–591, 2022. Available at: https://doi.org/10.1016/j.tifs.2021.11.019. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.tifs.2021.11.019
KE, Y. et al. Developing industry-scale microfluidization for cell disruption, biomolecules release and bioaccessibility improvement of Chlorella pyrenoidosa. Bioresource Technology, v. 387, p. 129649, 2023. Available at: https://doi.org/10.1016/j.biortech.2023.129649. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.biortech.2023.129649
KHOLSSI, R. et al. Biotechnological uses of microalgae: a review on the state of the art and challenges for the circular economy. Biocatalysis and Agricultural Biotechnology, v. 36, p. 102114, 2021. ISSN 1878-8181. Available at: https://doi.org/10.1016/j.bcab.2021.102114. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.bcab.2021.102114
KOKABI, K. et al. Metabolomic foundation for differential responses of lipid metabolism to nitrogen and phosphorus deprivation in an arachidonic acid-producing green microalga. Plant Science, v. 283, p. 95–115, 2019. Available at: https://doi.org/10.1016/j.plantsci.2019.02.008. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.plantsci.2019.02.008
KORSAH, M. A. et al. Techno-economic analysis of downstream processing of microalgae. In: GAGNON, Y.; JACOB-LOPES, E.; ZEPKA, L. Q.; DEPRÁ, M. C. (eds.). Algal bioreactors. Woodhead Series in Bioenergy. 1st ed. Amsterdam: Elsevier Science Ltd, 2025. p. 309–321. ISBN 978-0-443-14059-4. Available at: https://doi.org/10.1016/B978-0-443-14059-4.00003-9. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/B978-0-443-14059-4.00003-9
KRISHNAMOORTHY, A.; RODRIGUEZ, C.; DURRANT, A. Optimisation of ultrasonication pretreatment on microalgae Chlorella vulgaris & Nannochloropsis oculata for lipid extraction in biodiesel production. Energy, v. 278, p. 128026, 2023. Available at: https://doi.org/10.1016/j.energy.2023.128026. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.energy.2023.128026
LOURENÇO-LOPES, C. et al. Emerging technologies for fucoxanthin extraction from Undaria pinnatifida: microwave-assisted vs. ultrasound-assisted extractions. Marine Drugs, v. 21, n. 5, p. 282, 2023. Available at: https://doi.org/10.3390/md21050282. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3390/md21050282
MAO, Y.; ROBINSON, J. P.; BINNER, E. R. Current status of microwave-assisted extraction of pectin. Chemical Engineering Journal, v. 473, p. 145261, 2023. Available at: https://doi.org/10.1016/j.cej.2023.145261. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.cej.2023.145261
MENDES, K. D. S. et al. Integrative review: a research method for incorporating evidence in health and nursing. Texto & Contexto - Enfermagem, v. 17, n. 4, p. 758–764, Dec. 2008. Available at: https://doi.org/10.1590/S0104-07072008000400018. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1590/S0104-07072008000400018
MOLINO, A. et al. Bench-scale cultivation of Scenedesmus almeriensis for CO₂ capture and lutein production. Energies, v. 12, n. 14, p. 2806, 2019. Available at: https://doi.org/10.3390/en12142806. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3390/en12142806
NGUYEN, H. C. et al. Enzyme-assisted co-extraction of phenolics and polysaccharides from Padina gymnospora. Marine Drugs, v. 22, n. 1, p. 42, 2024. Available at: https://doi.org/10.3390/md22010042. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3390/md22010042
NIE, J. et al. Optimization and kinetic modeling of ultrasound-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using green solvents. Ultrasonics Sonochemistry, v. 77, p. 105671, 2021. Available at: https://doi.org/10.1016/j.ultsonch.2021.105671. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.ultsonch.2021.105671
OBLUCHINSKAYA, E. D. et al. Optimization of phlorotannin extraction from Arctic Fucus vesiculosus using natural deep eutectic solvents and HPLC profiling with high-resolution tandem mass spectrometry. Marine Drugs, v. 21, n. 5, p. 263, 2023. Available at: https://doi.org/10.3390/md21050263. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3390/md21050263
ODENTHAL, K. et al. Microalgae and cyanobacteria as natural sources of antioxidant enzymes and enzyme inhibitors for Alzheimer's and diabetes. Algal Research, v. 82, p. 103610, 2024. Available at: https://doi.org/10.1016/j.algal.2024.103610. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.algal.2024.103610
OLFAT, A. et al. Extraction of bioactive compounds from Hypnea flagelliformis by ultrasound-assisted extraction coupled with natural deep eutectic solvents and enzyme inhibitory activity. Algal Research, v. 78, p. 103388, 2024. Available at: https://doi.org/10.1016/j.algal.2023.103388. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.algal.2023.103388
PUTRA, V. G. P. et al. An ultrasound-based technique for the analytical extraction of phenolic compounds in red algae. Arabian Journal of Chemistry, v. 15, n. 2, p. 103597, 2022. Available at: https://doi.org/10.1016/j.arabjc.2021.103597. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.arabjc.2021.103597
RAHMAWATI, S. I. et al. Enzyme-assisted extraction of fatty acids from Caulerpa lentilifera: a preliminary study. In: IOP Conference Series: Earth and Environmental Science. [S.l.]: IOP Publishing, 2020. p. 012040. Available at: https://iopscience.iop.org/article/10.1088/1755-1315/404/1/012040. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1088/1755-1315/404/1/012040
RIZWAN, M. et al. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renewable and Sustainable Energy Reviews, v. 92, p. 394–404, 2018. Available at: https://doi.org/10.1016/j.rser.2018.04.034. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.rser.2018.04.034
SAFARI, P.; REZAEI, M.; SHAVIKLO, A. R. Optimal conditions for extraction of antioxidant compounds from green algae of the Persian Gulf (Chaetomorpha sp.) using response surface methodology. Journal of Food Science and Technology, v. 52, p. 2974–2981, 2015. Available at: https://link.springer.com/article/10.1007/s13197-014-1355-1. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1007/s13197-014-1355-1
SHANNON, E.; ABU-GHANNAM, N. Enzymatic extraction of fucoxanthin from brown seaweeds. International Journal of Food Science and Technology, v. 53, n. 9, p. 2195–2204, 2018. Available at: https://doi.org/10.1111/ijfs.13808. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1111/ijfs.13808
SILVA, I. F. et al. Movimento Química pós 2022: building an action plan for Chemistry and its actors to impact sustainability and sovereignty in Brazil. Química Nova, v. 45, n. 4, p. 497–505, 2022. Available at: https://doi.org/10.21577/0100-4042.20170898. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.21577/0100-4042.20170898
SOUZA, M. T. de; SILVA, M. D. da; CARVALHO, R. de. Integrative review: what is it? How to do it? Einstein (São Paulo), v. 8, n. 1, p. 102–106, Mar. 2010. Available at: https://doi.org/10.1590/S1679-45082010RW1134. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1590/s1679-45082010rw1134
SUN, X. et al. Hydrodynamic cavitation: a promising technology for industrial-scale synthesis of nanomaterials. Frontiers in Chemistry, v. 8, 2020. ISSN 2296-2646. Available at: https://doi.org/10.3389/fchem.2020.00259. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3389/fchem.2020.00259
SUTHERLAND, D. L. et al. How microalgal biotechnology can assist with the UN Sustainable Development Goals for natural resource management. Current Research in Environmental Sustainability, v. 3, p. 100050, 2021. Available at: https://doi.org/10.1016/j.crsust.2021.100050. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.crsust.2021.100050
VELAZQUEZ-LUCIO, J. et al. Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Research Journal, v. 17, p. 780–791, 2018. Available at: https://doi.org/10.18331/BRJ2018.5.1.5. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.18331/BRJ2018.5.1.5
VICTOR, M. M.; MOUTINHO, F. L. B.; RIATTO, V. B. Microalgae: a sustainable strategy for the transformation and production of organic compounds. Química Nova, v. 47, n. 2, 2024. Available at: https://doi.org/10.21577/0100-4042.20230107. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.21577/0100-4042.20230107
VO, T. P. et al. Novel extraction of bioactive compounds from algae using green solvents: principles, applications, and future perspectives. Journal of Agriculture and Food Research, p. 101535, 2024. Available at: https://doi.org/10.1016/j.jafr.2024.101535. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.jafr.2024.101535
XIAO, W.; HAN, L.; SHI, B. Microwave-assisted extraction of flavonoids from Radix Astragali. Separation and Purification Technology, v. 62, n. 3, p. 614–618, 2008. Available at: https://doi.org/10.1016/j.seppur.2008.03.025. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.seppur.2008.03.025
XU, M. et al. Effect of biodrying of lignocellulosic biomass on humification and microbial diversity. Bioresource Technology, v. 384, p. 129336, 2023. Available at: https://doi.org/10.1016/j.biortech.2023.129336. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.biortech.2023.129336
YANG, Y. et al. Recent advances in bioactive compounds from algal biomass for human health applications. Food Bioscience, v. 51, p. 102267, 2023. Available at: https://doi.org/10.1016/j.fbio.2022.102267. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.fbio.2022.102267
ZHAO, X. et al. Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity. Food Science and Biotechnology, v. 28, n. 6, p. 1637–1647, 2019. Available at: https://link.springer.com/article/10.1007/s10068-019-00608-6. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1007/s10068-019-00608-6
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Larissa Larissa Capeletti Romani1, Altemir Mossi, Helen Treichel

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
 
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista;
 - Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista, desde que adpatado ao template do repositório em questão;
 - Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
 - Os autores são responsáveis por inserir corretamente seus dados, incluindo nome, palavras-chave, resumos e demais informações, definindo assim a forma como desejam ser citados. Dessa forma, o corpo editorial da revista não se responsabiliza por eventuais erros ou inconsistências nesses registros.
 
POLÍTICA DE PRIVACIDADE
Os nomes e endereços informados nesta revista serão usados exclusivamente para os serviços prestados por esta publicação, não sendo disponibilizados para outras finalidades ou a terceiros.
Obs: todo o conteúdo do trabalho é de responsabilidade do autor e orientador.
						
							