EXTRACTION OF BIOPRODUCTS FROM MICROALGAE: A REVIEW OF METHODOLOGIES AND SCALE-UP STRATEGIES

Autores/as

  • Larissa Larissa Capeletti Romani1 Universidade Federal da Fronteira Sul
  • Altemir Mossi Universidade Federal da Fronteira Sul
  • Helen Treichel Universidade Federal da Fronteira Sul

DOI:

https://doi.org/10.61164/sgdfdc52

Palabras clave:

Biocomposites, Green solvents, Biological reactors, Integrated processes

Resumen

This study aimed to review bioproduct extraction methodologies from microalgae, with a focus on sustainable alternatives and scale-up strategies for industrial applications. An integrative literature review was conducted across national and international scientific databases, focusing on publications from 2021 onward. Microalgae stand out for their high biotechnological potential, producing high-value compounds such as pigments, polyunsaturated fatty acids, and polysaccharides, and have shown feasibility in wastewater treatment processes. Among the analyzed methodologies, microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), and ultrasound-assisted extraction (UAE) were highlighted, especially when combined with green solvents, as more efficient and environmentally safe alternatives. Critical parameters influencing yield, such as liquid-to-solid ratio, temperature, power, and extraction time, were discussed. Regarding scale-up, techniques such as hydrodynamic cavitation, high-pressure microfluidization, and photobioreactor use were emphasized for their potential to optimize biomass productivity and quality. It is concluded that integrating efficient cultivation processes, intensifying extraction, and applying sustainable technologies is essential to economically enabling large-scale microalgae bioproduct production, thereby advancing the bioeconomy and circular economy.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

ANDRADE, D. et al. Continental water microalgae: cultivation potentialities and challenges. 2014. Available at: https://archivum.grupomarista.org.br/pergamumweb/vinculos//00005b/00005b30.pdf. Accessed: Jul. 22, 2025.

ARBIB, Z. et al. Capacity of different microalgae species for phytoremediation processes: tertiary treatment of wastewater, CO₂ biofixation, and low-cost biofuel production. Water Research, v. 49, p. 465–474, 2014. Available at: https://doi.org/10.1016/j.watres.2013.10.036. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.watres.2013.10.036

BHATTACHARYA, M.; GOSWAMI, S. Microalgae – A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology, v. 25, p. 101580, 2020. ISSN 1878-8181. Available at: https://doi.org/10.1016/j.bcab.2020.101580. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.bcab.2020.101580

CASSANI, L. et al. Phytochemical compounds with promising biological activities from Ascophyllum nodosum extracts using microwave-assisted extraction. Food Chemistry, v. 438, p. 138037, 2024. Available at: https://doi.org/10.1016/j.foodchem.2023.138037. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.foodchem.2023.138037

CHEGUKRISHNAMURTHI, M. et al. Hydrodynamic cavitation mediated Spirulina valorisation with insights into phycocyanin extraction and biogas production. Communications Biology, v. 8, n. 1, p. 326, 2025. Available at: https://doi.org/10.1038/s42003-025-07702-y. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1038/s42003-025-07702-y

CHEN, X. et al. Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultivated in a novel membrane photobioreactor. Biotechnology for Biofuels, v. 11, p. 190, 2018. Available at: https://doi.org/10.1186/s13068-018-1190-0. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1186/s13068-018-1190-0

CHOKSHI, K. et al. Biofuel potential of the microalga Acutodesmus dimorphus under oxidative stress induced by temperature. Bioresource Technology, v. 180, p. 162–171, 2015. Available at: https://doi.org/10.1016/j.biortech.2014.12.102. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.biortech.2014.12.102

DEMAMAN ORO, C. E. et al. Process intensification approaches applied to the extraction of microalgae-based molecules. In: GAGNON, Y.; JACOB-LOPES, E.; ZEPKA, L. Q.; DEPRÁ, M. C. (eds.). Algal bioreactors. Woodhead Series in Bioenergy. 1st ed. Amsterdam: Elsevier Science Ltd, 2025. p. 323–329. ISBN 978-0-443-14059-4. Available at: https://doi.org/10.1016/B978-0-443-14059-4.00010-6. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/B978-0-443-14059-4.00010-6

DU, S. et al. Oxidative stress responses in two marine diatoms during acute exposure to n-butyl acrylate and ecotoxicological assessment using the IBRv2 index. Ecotoxicology and Environmental Safety, v. 240, p. 113686, 2022. Available at: https://doi.org/10.1016/j.ecoenv.2022.113686. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.ecoenv.2022.113686

EZEILO, U. R.; WAHAB, R. A.; MAHAT, N. A. Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid-state fermentation. Renewable Energy, v. 156, p. 1301–1312, 2020. Available at: https://ui.adsabs.harvard.edu/abs/2020REne..156.1301E/abstract. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.renene.2019.11.149

GANI, P. et al. Effects of different culture conditions on the efficiency of phytoremediation of domestic wastewater. Journal of Environmental Chemical Engineering, v. 4, p. 4744–4753, 2016. Available at: https://doi.org/10.1016/j.jece.2016.11.008. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.jece.2016.11.008

HABEEBULLAH, K. et al. Enzyme-assisted extraction of bioactive compounds from brown seaweeds and characterization. Journal of Applied Phycology, v. 32, n. 1, p. 615–629, 2020. Available at: https://link.springer.com/article/10.1007/s10811-019-01906-6. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1007/s10811-019-01906-6

HASHEMI, B. et al. Green solvents and approaches have recently applied for extraction of natural bioactive compounds. TrAC Trends in Analytical Chemistry, v. 157, p. 116732, 2022. Available at: https://doi.org/10.1016/j.trac.2022.116732. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.trac.2022.116732

IRIBARNEGARAY, M. A. et al. Management challenges for more decentralized treatment and reuse of domestic wastewater in metropolitan areas. Journal of Water, Sanitation and Hygiene for Development, v. 8, p. 113–122, 2018. Available at: https://doi.org/10.2166/washdev.2017.092. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.2166/washdev.2017.092

JACOB-LOPES, E. (ed.). Algal bioreactors: scale-up, economics, and sustainability. Vol. 2. 1st ed. Amsterdam: Elsevier, 2025. (Advances in Algal Biology and Biotechnology). ISBN 978-0-443-14059-4. Available at: https://www.sciencedirect.com/book/9780443140594/algal-bioreactors. Accessed: Aug. 4, 2025.

JESUS, B. C. et al. Valorisation of Sargassum muticum through the extraction of phenolic compounds using eutectic solvents and intensification techniques. RSC Sustainability, v. 1, n. 5, p. 1245–1258, 2023. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/su/d3su00051f. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1039/D3SU00051F

JHA, A. K.; SIT, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends in Food Science & Technology, v. 119, p. 579–591, 2022. Available at: https://doi.org/10.1016/j.tifs.2021.11.019. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.tifs.2021.11.019

KE, Y. et al. Developing industry-scale microfluidization for cell disruption, biomolecules release and bioaccessibility improvement of Chlorella pyrenoidosa. Bioresource Technology, v. 387, p. 129649, 2023. Available at: https://doi.org/10.1016/j.biortech.2023.129649. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.biortech.2023.129649

KHOLSSI, R. et al. Biotechnological uses of microalgae: a review on the state of the art and challenges for the circular economy. Biocatalysis and Agricultural Biotechnology, v. 36, p. 102114, 2021. ISSN 1878-8181. Available at: https://doi.org/10.1016/j.bcab.2021.102114. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.bcab.2021.102114

KOKABI, K. et al. Metabolomic foundation for differential responses of lipid metabolism to nitrogen and phosphorus deprivation in an arachidonic acid-producing green microalga. Plant Science, v. 283, p. 95–115, 2019. Available at: https://doi.org/10.1016/j.plantsci.2019.02.008. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.plantsci.2019.02.008

KORSAH, M. A. et al. Techno-economic analysis of downstream processing of microalgae. In: GAGNON, Y.; JACOB-LOPES, E.; ZEPKA, L. Q.; DEPRÁ, M. C. (eds.). Algal bioreactors. Woodhead Series in Bioenergy. 1st ed. Amsterdam: Elsevier Science Ltd, 2025. p. 309–321. ISBN 978-0-443-14059-4. Available at: https://doi.org/10.1016/B978-0-443-14059-4.00003-9. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/B978-0-443-14059-4.00003-9

KRISHNAMOORTHY, A.; RODRIGUEZ, C.; DURRANT, A. Optimisation of ultrasonication pretreatment on microalgae Chlorella vulgaris & Nannochloropsis oculata for lipid extraction in biodiesel production. Energy, v. 278, p. 128026, 2023. Available at: https://doi.org/10.1016/j.energy.2023.128026. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.energy.2023.128026

LOURENÇO-LOPES, C. et al. Emerging technologies for fucoxanthin extraction from Undaria pinnatifida: microwave-assisted vs. ultrasound-assisted extractions. Marine Drugs, v. 21, n. 5, p. 282, 2023. Available at: https://doi.org/10.3390/md21050282. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3390/md21050282

MAO, Y.; ROBINSON, J. P.; BINNER, E. R. Current status of microwave-assisted extraction of pectin. Chemical Engineering Journal, v. 473, p. 145261, 2023. Available at: https://doi.org/10.1016/j.cej.2023.145261. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.cej.2023.145261

MENDES, K. D. S. et al. Integrative review: a research method for incorporating evidence in health and nursing. Texto & Contexto - Enfermagem, v. 17, n. 4, p. 758–764, Dec. 2008. Available at: https://doi.org/10.1590/S0104-07072008000400018. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1590/S0104-07072008000400018

MOLINO, A. et al. Bench-scale cultivation of Scenedesmus almeriensis for CO₂ capture and lutein production. Energies, v. 12, n. 14, p. 2806, 2019. Available at: https://doi.org/10.3390/en12142806. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3390/en12142806

NGUYEN, H. C. et al. Enzyme-assisted co-extraction of phenolics and polysaccharides from Padina gymnospora. Marine Drugs, v. 22, n. 1, p. 42, 2024. Available at: https://doi.org/10.3390/md22010042. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3390/md22010042

NIE, J. et al. Optimization and kinetic modeling of ultrasound-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using green solvents. Ultrasonics Sonochemistry, v. 77, p. 105671, 2021. Available at: https://doi.org/10.1016/j.ultsonch.2021.105671. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.ultsonch.2021.105671

OBLUCHINSKAYA, E. D. et al. Optimization of phlorotannin extraction from Arctic Fucus vesiculosus using natural deep eutectic solvents and HPLC profiling with high-resolution tandem mass spectrometry. Marine Drugs, v. 21, n. 5, p. 263, 2023. Available at: https://doi.org/10.3390/md21050263. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3390/md21050263

ODENTHAL, K. et al. Microalgae and cyanobacteria as natural sources of antioxidant enzymes and enzyme inhibitors for Alzheimer's and diabetes. Algal Research, v. 82, p. 103610, 2024. Available at: https://doi.org/10.1016/j.algal.2024.103610. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.algal.2024.103610

OLFAT, A. et al. Extraction of bioactive compounds from Hypnea flagelliformis by ultrasound-assisted extraction coupled with natural deep eutectic solvents and enzyme inhibitory activity. Algal Research, v. 78, p. 103388, 2024. Available at: https://doi.org/10.1016/j.algal.2023.103388. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.algal.2023.103388

PUTRA, V. G. P. et al. An ultrasound-based technique for the analytical extraction of phenolic compounds in red algae. Arabian Journal of Chemistry, v. 15, n. 2, p. 103597, 2022. Available at: https://doi.org/10.1016/j.arabjc.2021.103597. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.arabjc.2021.103597

RAHMAWATI, S. I. et al. Enzyme-assisted extraction of fatty acids from Caulerpa lentilifera: a preliminary study. In: IOP Conference Series: Earth and Environmental Science. [S.l.]: IOP Publishing, 2020. p. 012040. Available at: https://iopscience.iop.org/article/10.1088/1755-1315/404/1/012040. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1088/1755-1315/404/1/012040

RIZWAN, M. et al. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renewable and Sustainable Energy Reviews, v. 92, p. 394–404, 2018. Available at: https://doi.org/10.1016/j.rser.2018.04.034. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.rser.2018.04.034

SAFARI, P.; REZAEI, M.; SHAVIKLO, A. R. Optimal conditions for extraction of antioxidant compounds from green algae of the Persian Gulf (Chaetomorpha sp.) using response surface methodology. Journal of Food Science and Technology, v. 52, p. 2974–2981, 2015. Available at: https://link.springer.com/article/10.1007/s13197-014-1355-1. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1007/s13197-014-1355-1

SHANNON, E.; ABU-GHANNAM, N. Enzymatic extraction of fucoxanthin from brown seaweeds. International Journal of Food Science and Technology, v. 53, n. 9, p. 2195–2204, 2018. Available at: https://doi.org/10.1111/ijfs.13808. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1111/ijfs.13808

SILVA, I. F. et al. Movimento Química pós 2022: building an action plan for Chemistry and its actors to impact sustainability and sovereignty in Brazil. Química Nova, v. 45, n. 4, p. 497–505, 2022. Available at: https://doi.org/10.21577/0100-4042.20170898. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.21577/0100-4042.20170898

SOUZA, M. T. de; SILVA, M. D. da; CARVALHO, R. de. Integrative review: what is it? How to do it? Einstein (São Paulo), v. 8, n. 1, p. 102–106, Mar. 2010. Available at: https://doi.org/10.1590/S1679-45082010RW1134. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1590/s1679-45082010rw1134

SUN, X. et al. Hydrodynamic cavitation: a promising technology for industrial-scale synthesis of nanomaterials. Frontiers in Chemistry, v. 8, 2020. ISSN 2296-2646. Available at: https://doi.org/10.3389/fchem.2020.00259. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.3389/fchem.2020.00259

SUTHERLAND, D. L. et al. How microalgal biotechnology can assist with the UN Sustainable Development Goals for natural resource management. Current Research in Environmental Sustainability, v. 3, p. 100050, 2021. Available at: https://doi.org/10.1016/j.crsust.2021.100050. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.crsust.2021.100050

VELAZQUEZ-LUCIO, J. et al. Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Research Journal, v. 17, p. 780–791, 2018. Available at: https://doi.org/10.18331/BRJ2018.5.1.5. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.18331/BRJ2018.5.1.5

VICTOR, M. M.; MOUTINHO, F. L. B.; RIATTO, V. B. Microalgae: a sustainable strategy for the transformation and production of organic compounds. Química Nova, v. 47, n. 2, 2024. Available at: https://doi.org/10.21577/0100-4042.20230107. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.21577/0100-4042.20230107

VO, T. P. et al. Novel extraction of bioactive compounds from algae using green solvents: principles, applications, and future perspectives. Journal of Agriculture and Food Research, p. 101535, 2024. Available at: https://doi.org/10.1016/j.jafr.2024.101535. Accessed: Jul. 22, 2025. DOI: https://doi.org/10.1016/j.jafr.2024.101535

XIAO, W.; HAN, L.; SHI, B. Microwave-assisted extraction of flavonoids from Radix Astragali. Separation and Purification Technology, v. 62, n. 3, p. 614–618, 2008. Available at: https://doi.org/10.1016/j.seppur.2008.03.025. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.seppur.2008.03.025

XU, M. et al. Effect of biodrying of lignocellulosic biomass on humification and microbial diversity. Bioresource Technology, v. 384, p. 129336, 2023. Available at: https://doi.org/10.1016/j.biortech.2023.129336. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.biortech.2023.129336

YANG, Y. et al. Recent advances in bioactive compounds from algal biomass for human health applications. Food Bioscience, v. 51, p. 102267, 2023. Available at: https://doi.org/10.1016/j.fbio.2022.102267. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1016/j.fbio.2022.102267

ZHAO, X. et al. Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity. Food Science and Biotechnology, v. 28, n. 6, p. 1637–1647, 2019. Available at: https://link.springer.com/article/10.1007/s10068-019-00608-6. Accessed: Aug. 4, 2025. DOI: https://doi.org/10.1007/s10068-019-00608-6

Publicado

2025-10-30

Cómo citar

EXTRACTION OF BIOPRODUCTS FROM MICROALGAE: A REVIEW OF METHODOLOGIES AND SCALE-UP STRATEGIES. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 19(03), 1-32. https://doi.org/10.61164/sgdfdc52