PROCESSING TECHNOLOGIES FOR RARE EARTH ELEMENTS FROM PERALKALINE IGNEOUS DEPOSITS: A SYSTEMATIC REVIEW
DOI:
https://doi.org/10.61164/p8v9aq27Keywords:
peralkaline igneous rocks; eudialyte; steenstrupine; loparite; Zr–Nb–REE deposits; hydrometallurgy; roasting; chloride leaching.Abstract
Peralkaline igneous deposits have gained increased attention as strategic sources of heavy rare earth elements (HREEs) and critical metals such as Zr, Nb, and Hf, providing a potential alternative to carbonatite and ion-adsorption clay deposits within a diversified global supply chain. Their processing remains technologically challenging due to complex silicate mineralogy—dominated by eudialyte-group minerals and steenstrupine—slow dissolution kinetics, and the widespread formation of silica gel during leaching, all of which require specialized “chemical-cracking” methods, including acid baking, dry digestion, sulfation or chloride roasting, and alkali fusion. Significant progress has been made in beneficiation (e.g., improved magnetic and gravity separation, enhanced mineral liberation through automated mineralogy) and hydrometallurgical processing, especially in approaches that prevent silica polymerization, boost selectivity for HREEs, and lower reagent use through optimized thermochemical decomposition. Recent research also includes innovations in solvent extraction, residue stabilization strategies, and life-cycle assessments, highlighting both improved technical feasibility and changing environmental considerations. Compared to carbonatites, which generally contain more acid-soluble LREE phases, peralkaline deposits demand more energy-intensive processing flowsheets; however, they provide significantly higher HREE concentrations than ion-adsorption clays, supporting long-term supply resilience. Overall, these advancements indicate that many of the historical metallurgical challenges associated with peralkaline REE ores are becoming increasingly manageable, positioning these deposits as promising sources for future REE production.
Downloads
References
Andersen, T., Erambert, M., Larsen, A. O., et al. (2010). Petrogenesis of peralkaline nepheline syenite complexes. Lithos, 114, 263–286. https://doi.org/10.1016/j.lithos.2009.09.009
Andersen, T., et al. (2019). REE patterns in peralkaline complexes. Lithos, 342–343, 304–318. https://doi.org/10.1016/j.lithos.2019.06.009
Avalon Advanced Materials. (2020). Nechalacho Project Technical Report. https://www.avalonadvancedmaterials.com
Balaram, V. (2019). Rare earth elements: A review. Geoscience Frontiers, 10, 1285–1305. https://doi.org/10.1016/j.gsf.2018.12.005
Balaram, V. (2024). Rare earth elements: Resources, applications, extraction technologies, chemical characterization, and global trade – A comprehensive review. In Rare Earths (Elsevier). https://doi.org/10.1016/B978-0-323-99762-1.00041-3
Beard, C. D., Goodenough, K. M., Williamson, B. J., Xu, C., Zhou, M. F., & Shuang, M. (2023). Alkaline-silicate REE–HFSE systems: Geology, mineralogy, and processes. Economic Geology, 118(2), 281–314. https://doi.org/10.5382/econgeo.4956
Binnemans, K., & Jones, P. T. (2015). Rare earth extraction from primary ores using hydrochloric acid decomposition. Journal of Sustainable Metallurgy, 1, 51–65. https://doi.org/10.1007/s40831-014-0004-4
Binnemans, K., et al. (2013). Recycling and recovery of rare earths – A review. Journal of Cleaner Production, 51, 1–22. https://doi.org/10.1016/j.jclepro.2012.12.037
Birkett, T., & Simandl, G. (2014). Peralkaline deposits as REE sources. BC Geological Survey Paper 2014-3.
Birkett, T., & Simandl, G. (2014). Peralkaline deposits of North America. BC Geological Survey Paper 2014-3.
Borra, C. R., Pontikes, Y., Binnemans, K., & Van Gerven, T. (2015). Recovery of REE from eudialyte by sulphuric acid decomposition. Hydrometallurgy, 158, 1–7. https://doi.org/10.1016/j.hydromet.2015.08.009
Borra, C. R., et al. (2017). Selective recovery of REE from silica-rich ores. Hydrometallurgy, 167, 95–105. https://doi.org/10.1016/j.hydromet.2016.11.010
Borst, A. M., Friis, H., Andersen, T., et al. (2016). Eudialyte decomposition pathways in acidic fluids. American Mineralogist, 101, 1708–1720. https://doi.org/10.2138/am-2016-5544
Borst, A. M., Friis, H., Andersen, T., et al. (2018). The chemistry of eudialyte-group minerals. Minerals, 8(11), 499. https://doi.org/10.3390/min8110499
Borst, A. M., Friis, H., Andersen, T., et al. (2020). Structural state of rare-earth elements in eudialyte-group minerals. Mineralogical Magazine. https://doi.org/10.1180/mgm.2020.47
Dostal, J. (2017). Rare earth element deposits of alkaline igneous rocks. Resources, 6(3), 34. https://doi.org/10.3390/resources6030034
Estrade, G., Salvi, S., & Béziat, D. (2014). REE and HFSE mineralization in peralkaline granites of Strange Lake. Economic Geology, 109, 1555–1576. https://doi.org/10.2113/econgeo.109.5.1555
European Commission. (2020). Critical Raw Materials for the EU – Report. https://ec.europa.eu/docsroom/documents/42849
Gajendra, N., et al. (2025). Towards a European sustainable beneficiation of REE-bearing minerals. Science of the Total Environment. https://doi.org/10.1016/S0048-9697(25)01023-X
GEUS. (2022). REE – Data og kort. Geological Survey of Denmark and Greenland. https://data.geus.dk/pure-pdf/MiMa-R_2022_01_web.pdf
Goodenough, K. M., Wall, F., & Merriman, D. (2018). The rare earth elements: Demand, global resources. Elements, 14(4), 229–234. https://doi.org/10.2138/gselements.14.4.229
Grammatikopoulos, T., et al. (2013). QEMSCAN characterization of Nechalacho deposit. Minerals Engineering, 52, 1–10. https://doi.org/10.1016/j.mineng.2013.04.018
Habashi, F. (2013). Extractive metallurgy of rare earths. Metallurgical and Materials Transactions B, 44, 5–10. https://doi.org/10.1007/s11663-013-9872-6
Hatch Ltd. (2014). Kvanefjeld Feasibility Study Report – Hydrometallurgical Testwork. https://www.ggmining.com
Hatch Ltd. (2021). Processing challenges for hard-rock REE (“eudialyte-class”) ores – Technical bulletin. https://www.hatch.com
Hydrometallurgical Processing of Eudialyte Bearing Concentrates via Dry Digestion. (2016). Journal/Proceedings. https://www.researchgate.net/publication/306432987
Jak, E., Degoul, O., et al. (2022). Thermodynamic modeling of REE–silicate systems. Calphad, 78, 102445. https://doi.org/10.1016/j.calphad.2022.102445
Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of REE processing. Minerals Engineering, 41, 97–114. https://doi.org/10.1016/j.mineng.2012.10.017
Li, G., Ni, W., Li, L., et al. (2018). Flotation of eudialyte from Norra Kärr ore. Minerals Engineering, 127, 32–40. https://doi.org/10.1016/j.mineng.2018.07.009
Li, J., Li, C., & Wang, D. (2018). Chlorination roasting of eudialyte concentrate. Transactions of Nonferrous Metals Society of China, 28, 1231–1240. https://doi.org/10.1016/S1003-6326(18)64763-1
Liu, C., Chi, R., et al. (2011). Recovery of rare earths from eudialyte by HCl leaching. Hydrometallurgy, 105, 149–154. https://doi.org/10.1016/j.hydromet.2010.10.009
Liu, S.-L., Fan, H.-R., Liu, X., Zhang, Y., & Zhou, L. (2023). Global rare earth elements projects: New developments and supply chains. Ore Geology Reviews, 157, 105428. https://doi.org/10.1016/j.oregeorev.2023.105428
Mancini, L., Eslava, N., & Traverso, M. (2020). Environmental sustainability of REE production from hard-rock deposits. Journal of Cleaner Production, 276, 123249. https://doi.org/10.1016/j.jclepro.2020.123249
Mariano, A. N. (1989). Nature of rare earth elements in igneous systems. Economic Geology Monograph. https://pubs.geoscienceworld.org/econgeol
Marion, C., Paris, J., Grammatikopoulos, T., et al. (2023). Physical separations for rare-earth beneficiation of the Nechalacho deposit. Minerals, 13(12), 1521. https://doi.org/10.3390/min13121521
Marks, M. A. W., Halama, R., Wenzel, T., & Markl, G. (2011). The mineralogy and geochemistry of eudialyte-group minerals from peralkaline complexes. American Mineralogist, 96, 1–16. https://doi.org/10.2138/am.2011.3564
McNulty, T., Hazen, N., & Park, S. (2022). Processing the ores of rare-earth elements. https://core.ac.uk/download/pdf/235261646.pdf
Moldoveanu, G., & Papangelakis, V. (2012). High-temperature acid baking for decomposition of REE ores. Hydrometallurgy, 117–118, 71–78. https://doi.org/10.1016/j.hydromet.2012.02.007
Moldoveanu, G., & Papangelakis, V. (2013). Sulfuric acid baking of rare earth ores. Hydrometallurgy, 133, 84–93. https://doi.org/10.1016/j.hydromet.2012.12.012
Ni, W., Rao, D., Li, G., et al. (2017). Magnetic separation behavior of eudialyte–zircon mixture. Minerals Engineering, 110, 74–82. https://doi.org/10.1016/j.mineng.2017.04.010
Ni, W., Li, G., Rao, D., et al. (2018). Magnetic separation of eudialyte ores. Minerals Engineering, 125, 15–26. https://doi.org/10.1016/j.mineng.2018.06.018
Omodara, L., Borowski, S., et al. (2019). Recovery of REE from complex silicate ores. Journal of Cleaner Production, 220, 35–50. https://doi.org/10.1016/j.jclepro.2019.02.133
Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al. (2021). The PRISMA 2020 statement. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Ponou, J., et al. (2020). Eudialyte-group minerals: Structure, geochemistry, processing relevance. Minerals, 10(5), 486. https://doi.org/10.3390/min10050486
Public Health Association of Australia. (2021). Rare Earth Elements – Policy Position Statement. https://www.phaa.net.au
Rare Earth Traceability Study. (2023). https://norden.diva-portal.org
Rasool, M. H., et al. (2025). A mineralogical perspective on REE extraction from drill cuttings. Minerals, 15(5), 533. https://doi.org/10.3390/min15050533
Reguir, E. P., Williams, C. T., Andersen, T., et al. (2012). REE distribution in peralkaline rocks. Canadian Mineralogist, 50, 251–275. https://doi.org/10.3749/canmin.50.2.251
Rezaei, M., Ghaderi, M., & Amini, M. (2025). A cross-disciplinary review of rare earth elements. Minerals, 15(7), 720. https://www.mdpi.com/2075-163X/15/7/720
Sadeghi, M., et al. (2017). Alkali fusion decomposition of eudialyte ore for rare earth recovery. Minerals Engineering, 109, 55–63. https://doi.org/10.1016/j.mineng.2017.03.018
Silin, I., Alexandrova, T., Shadrin, E., Tolstov, A., & Yakovenchuk, V. (2022). Recovery of catapleiite and eudialyte from non-magnetic fraction of eudialyte ore. Minerals, 12(1), 19. https://doi.org/10.3390/min12010019
Smith, M. P., Campbell, L. S., & Kynicky, J. (2016). REE geology of alkaline complexes. Ore Geology Reviews, 72, 127–150. https://doi.org/10.1016/j.oregeorev.2015.06.023
Sørensen, H. (1992). Agpaitic nepheline syenites. Mineralogical Magazine, 56(383), 381–400. https://doi.org/10.1180/minmag.1992.056.383.11
Sprecher, B., Kleijn, R., & Kramer, G. J. (2014). Life cycle inventory for rare earth production from peralkaline deposits. Environmental Science & Technology, 48, 3951–3958. https://doi.org/10.1021/es404596q
Stopic, S., et al. (2020). Sulfation roasting of eudialyte concentrate. Metals, 10(9), 1160. https://doi.org/10.3390/met10091160
Structural state of REE in eudialyte-group minerals. (2016). Mineralogical Magazine. https://doi.org/10.1180/minmag.2016.080.065
Tasman Metals AB. (2015). Norra Kärr Project NI 43-101 Technical Report. https://www.sedar.com
Tse, P.-K. (2011). China’s rare earth industry. USGS Open-File Report. https://pubs.usgs.gov
United States Geological Survey. (2022). Rare Earths – Commodity Summary. https://pubs.usgs.gov
Van Bree, N., Verhaeghe, F., et al. (2021). Advances in solvent extraction for rare earths. Chemical Engineering Journal, 426, 131300. https://doi.org/10.1016/j.cej.2021.131300
Yin, Y., Chen, Y., Chen, L., Zhou, Y., & Zhang, C. (2021). Potential environmental risks associated with rare earth processing. Environmental Reviews, 29(4), 476–493. https://doi.org/10.1139/ER-2020-0115
Yun, Y., Stopic, S., & Friedrich, B. (2020). Valorization of rare earth elements from steenstrupine concentrate. Minerals, 10(3), 248. https://doi.org/10.3390/min10030248
Zapp, P., Schreiber, A., Marx, J., & Kuckshinrichs, W. (2022). Environmental impacts of rare earth production. MRS Bulletin, 47(3), 267–275. https://doi.org/10.1557/s43577-022-00286-6
Zhang, W., Zhu, Z., & Cheng, C. Y. (2016). Chloride leaching of rare earth elements: A review. Hydrometallurgy, 165, 390–400. https://doi.org/10.1016/j.hydromet.2016.06.007
Ziraba, Y. N., et al. (2023). Kinetic modelling of H₂SO₄ decomposition of eudialyte. Minerals, 13(11), 1205. https://doi.org/10.3390/min13111205
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Antonio Clareti Pereira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista;
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista, desde que adpatado ao template do repositório em questão;
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
- Os autores são responsáveis por inserir corretamente seus dados, incluindo nome, palavras-chave, resumos e demais informações, definindo assim a forma como desejam ser citados. Dessa forma, o corpo editorial da revista não se responsabiliza por eventuais erros ou inconsistências nesses registros.
POLÍTICA DE PRIVACIDADE
Os nomes e endereços informados nesta revista serão usados exclusivamente para os serviços prestados por esta publicação, não sendo disponibilizados para outras finalidades ou a terceiros.
Obs: todo o conteúdo do trabalho é de responsabilidade do autor e orientador.
