HLA GENES AND VACCINE RESPONDE: A NARRATIVE REVIEW
DOI:
https://doi.org/10.61164/53z6tt45Keywords:
HLA system, genetic polymorphism, vaccine response, immunogeneticsAbstract
Introduction: The HLA system plays a key role in immune responses to vaccines by presenting antigens and activating lymphocytes. Its high genetic variability explains differences in vaccine efficacy among individuals and populations. Purpose: To evaluate the influence of HLA polymorphisms on vaccine-induced immune responses, identifying alleles associated with strong protection or vaccine failure. Methodology: An integrative literature review (2015–2025) was conducted in PubMed, SciELO, and Web of Science, including original articles and systematic reviews addressing the relationship between HLA alleles and vaccine response in humans. Results and discussion: Alleles such as HLA-DRB115 and HLA-DQB106 were linked to strong responses to hepatitis B and influenza vaccines, whereas HLA-DRB103 and HLA-DQB102 were associated with hyporesponsiveness to the MMR vaccine and some COVID-19 vaccines. Differences in antigen presentation by class I and II molecules affect both humoral and cellular immunity, and allele frequency varies across populations. Final considerations: HLA genetic diversity is a determinant of vaccine response, supporting the need for personalized immunogenetic strategies.
References
ABBAS, A. K.; LICHTMAN, A. H.; PILLAI, S. Imunologia celular e molecular. 10. ed. Rio de Janeiro: Elsevier, 2021.
ABEDINI, F. et al. Diversity of HLA class I and class II alleles in Iran populations: systematic review and meta-analysis. Transplant Immunology, [S.l], v. 69, p. 101472, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34555503/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1016/j.trim.2021.101472
ABUALROUS, E. T. et al. Major histocompatibility complex (MHC) class I and class II proteins: impact of polymorphism on antigen presentation. Current Opinion in Immunology, [S.l], v. 70, p. 95-104, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34052735/. Acesso em: 06 jun. 2025. DOI: https://doi.org/10.1016/j.coi.2021.04.009
AFLALO, A.; BOYLE, L. H. Polymorphisms in MHC class I molecules influence their interactions with components of the antigen processing and presentation pathway. International Journal of Immunogenetics, Oxford, England, v. 48, n. 4, p. 317-325, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34176210/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1111/iji.12546
ALONSO, G. T. et al. Linfócitos T auxiliares foliculares humanos: células essenciais para a resposta de anticorpos. Einstein, São Paulo, v. 19, eRB6077, 2021. Disponível em: https://www.scielo.br/j/eins/a/5FVnw3RwdFkHTxX5qLXVthH/?lang=pt&format=pdf. Acesso em: 6 jun. 2025.
BOQUETT, J. A. et al. HLA diversity in Brazil. HLA, [S.l.], v. 95, p. 3–14, 2019. DOI: https://doi.org/10.1111/tan.13723
CARRYN, St. et al. Long-term immunogenicity of measles, mumps and rubella-containing vaccines in healthy young children: a 10-year follow-up. Vaccine, [S.l.], v. 37, n. 36, p. 5323-5331, 2019. Disponível ema; https://pubmed.ncbi.nlm.nih.gov/31345639/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1016/j.vaccine.2019.07.049
COWLING, B. J.; OKOLI, G. N. Influenza vaccine effectiveness and progress towards a universal influenza vaccine. Drugs, [S.l.], v. 84, n. 9, p. 1013-1023, 2024. Disponível em: https://pubmed.ncbi.nlm.nih.gov/39167316/. Acesso em: 06 jun. 2025. DOI: https://doi.org/10.1007/s40265-024-02083-8
CROTTY, S. T follicular helper cell biology: A decade of discovery and diseases. Immunity, [S.l.], v. 50, n. 5, p. 1132–1148, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31117010/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1016/j.immuni.2019.04.011
FABRETI-OLIVEIRA, R. A. et al. The heterogeneous HLA genetic composition of the Brazilian population and its relevance to the optimization of hematopoietic stem cell donor recruitment. Tissue Antigens, [S.l.], v. 84, n. 1, p. 187–197, 2014. Disponível em: https://pubmed.ncbi.nlm.nih.gov/24724906/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1111/tan.12352
FAKHKHARI, M.; CAIDI, H.; SADKI, K. HLA alleles associated with COVID-19 susceptibility and severity in different populations: a systematic review. Egyptian Journal of Medical Human Genetics, Cairo, Egito, v. 24, n. 1, p. 10, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36710951/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1186/s43042-023-00390-5
FERNANDES, A. P. M. et al. Bases da imunologia. São Paulo: Atheneu, 2003.
JANEWAY, C. A. et al. Imunobiologia. 9. ed. Porto Alegre: Artmed, 2017.
KAWASHIMA, Y. et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature Reviews Immunology, Hangzhou, China, v. 458, n. 7238, p. 641-645, 2009. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19242411/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1038/nature07746
LIMA-JÚNIOR, J. C. et al. Influence of HLA-DRB1 and HLA-DQB1 Alleles on IgG Antibody Response to the P. vivax MSP-1, MSP-3a and MSP-9 in Individuals from Brazilian Endemic Area. PLoS ONE, San Francisco, EUA, v. 7, n. 5, e36419, 2012. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036419. Acesso em: 05 maio 2025. DOI: https://doi.org/10.1371/journal.pone.0036419
MIGLIORINI, F. et al. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. European Journal of Medical Research,[S.l.], v. 26, n. 1, p. 84, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34344463/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1186/s40001-021-00563-1
OU, G. et al. HLA-DPB1 alleles in hepatitis B vaccine response: a meta-analysis. Medicine, Baltimore, EUA, v. 100, n. 14, p. e24904, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33832070/. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1097/MD.0000000000024904
OVSYANNIKOVA, I. G. et al. A large population-based association study between HLA and KIR genotypes and measles vaccine antibody responses. PLoS ONE, San Francisco, EUA,, v. 12, n. 2, e0171261, 2017. Disponível em: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171261&type=printable. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1371/journal.pone.0171261
OVSYANNIKOVA, I. G. et al. HLA genotypes and rubella vaccine immune response: additional evidence. Vaccine, [S.l.], v. 32, n. 33, p. 4206-4213, 2014. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC4124933/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1016/j.vaccine.2014.04.091
PETERS, B. et al. T Cell Epitope Predictions. Annual Review of Immunology, [S.l.], v. 38, n. 1, p. 83–104, 2020. Disponível em: https://www.annualreviews.org/content/journals/10.1146/annurev-immunol-082119-124838. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1146/annurev-immunol-082119-124838
PISHESHA, N. et al. A guide to antigen processing and presentation. Nature Reviews Immunology, Hangzhou, China, v. 22, n. 12, p. 751-764, 2022. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35418563/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1038/s41577-022-00707-2
POLAND, G. A.; OVSYANIKOVA, I. G.; KENNEDY, R. B. Personalized vaccinology: A review. Vaccine, [S.l.], v. 36, n. 36, p. 5350–5357, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28774561/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1016/j.vaccine.2017.07.062
SACO, T. V. et al. Hepatitis B vaccine nonresponders: possible mechanisms and solutions. Annals of Allergy, Asthma & Immunology, Colombus, EUA, v. 121, n. 3, p. 320-327, set. 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29567355/. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1016/j.anai.2018.03.017
SAKAI, A. et al. Identification of amino acids in antigen-binding site of class II HLA proteins independently associated with hepatitis B vaccine response. Vaccine, [S.l.], v. 35, n. 47, p. 703-710, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28043736/. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1016/j.vaccine.2016.08.068
SIEGRIST, C. A. Vaccine immunology. In: ORENSTEIN, W. A. et al. Plotkin’s Vaccines. 7. ed. Rio de Janeiro: Elsevier, 2018, p. 16-34. DOI: https://doi.org/10.1016/B978-0-323-35761-6.00002-X
SETTE, A.; CROTTY, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, [S.l.], v. 184, n. 4, p. 861–880, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33497610/. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1016/j.cell.2021.01.007
SONON, P. et al. Human leukocyte antigen (HLA)-F and -G gene polymorphisms and haplotypes are associated with malaria susceptibility in the Beninese Toffin children. Infection, Genetics and Evolution, [S.l.], v. 92, p. 104828, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S1567134821001258?via%3Dihub. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1016/j.meegid.2021.104828
TERAJIMA, M. et al. Identification of vaccinia CD8+ T-cell epitopes conserved among vaccinia and variola viruses restricted by common MHC class I molecules, HLA-A2 or HLA-B7. Human Immunology, Arlington, EUA, v. 67, n. 7, p. 512-520, 2006. Disponível em: https://pubmed.ncbi.nlm.nih.gov/16829305/. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1016/j.humimm.2005.12.004
TERAJIMA, M. et al. Quantitation of CD8+ T cell responses to newly identified HLA-A*0201-restricted T cell epitopes conserved among vaccinia and variola (smallpox) viruses. The Journal of Experimental Medicine, [S.l.], v. 197, n. 7, p. 927-932, 2003. Disponível em: https://pubmed.ncbi.nlm.nih.gov/12668642/. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1084/jem.20022222
TUKWASIBWE, S. et al. Diversity of KIR genes and their HLA-C ligands in Ugandan populations with historically varied malaria transmission intensity. Malaria Journal, [S.l.], v. 20, n. 1, p. 111, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33632228/. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1186/s12936-021-03652-y
WANG, L. et al. Response to hepatitis B vaccination is co-determined by HLA-DPA1 and -DPB1. Vaccine, [S.l.], v. 37, n. 43, p. 6435–6440, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31515149/. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1016/j.vaccine.2019.09.001
YEWDELL, J. W.; BENNINK, J. R. Immunodominance in major histocompatibility complex class I–restricted T lymphocyte responses. Annual Review of Immunology, [S.l.], v. 39, p. 395–419, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/10358753/. Acesso em: 20 ago. 2025.
ZHANG, L. et al. Human leukocyte antigen (HLA) class I and II genetic relationships with brain imaging measures: a systematic review and meta-analysis. Brain, Behavior and Immunity, New Orleans, USA, v. 128, p. 336–351, 2025. Disponível em: https://pubmed.ncbi.nlm.nih.gov/40222562/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1016/j.bbi.2025.04.011
ZHANG, Y. et al. The link between genetic variation and variability in vaccine responses: a narrative review. Journal of Bio-X Research, , [S.l.], v. 5, p. 49-54, 2022. Disponível em: https://spj.science.org/doi/10.1097/JBR.0000000000000122. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1097/JBR.0000000000000122
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Revista Multidisciplinar do Nordeste Mineiro

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.