GENES HLA E RESPOSTA VACINAL: UMA REVISÃO NARRATIVA

Autores

  • Roberta Luiza Ferreira Santos Faculdade Patos de Minas
  • Hugo Christiano Soares Melo Faculdade Patos de Minas - FPM

DOI:

https://doi.org/10.61164/53z6tt45

Palavras-chave:

Sistema HLA, polimorfismo genético, resposta vacinal, imunogenética

Resumo

Introdução: O sistema HLA é essencial na resposta imune às vacinas, pois apresenta antígenos e ativa linfócitos. Sua grande variabilidade genética explica diferenças de eficácia vacinal entre indivíduos e populações. Objetivo: Avaliar a influência dos polimorfismos do HLA na resposta imunológica a vacinas, identificando alelos associados à boa resposta ou falhas vacinais. Metodologia: Revisão integrativa da literatura (2015–2025) nas bases PubMed, SciELO e Web of Science, incluindo artigos originais e revisões sobre HLA e resposta vacinal em humanos. Resultados e discussão: Alelos como HLA-DRB115 e HLA-DQB106 foram associados a respostas robustas contra hepatite B e influenza, enquanto HLA-DRB103 e HLA-DQB102 relacionaram-se à hiporresponsividade a vacinas como a tríplice viral e a alguns imunizantes contra COVID-19. Diferenças na apresentação antigênica das classes I e II afetam a imunidade humoral e celular, e a frequência alélica varia entre regiões. Considerações finais: A diversidade genética do HLA influencia fortemente a resposta vacinal, indicando a necessidade de estratégias imunogenéticas personalizadas.

Referências

ABBAS, A. K.; LICHTMAN, A. H.; PILLAI, S. Imunologia celular e molecular. 10. ed. Rio de Janeiro: Elsevier, 2021.

ABEDINI, F. et al. Diversity of HLA class I and class II alleles in Iran populations: systematic review and meta-analysis. Transplant Immunology, [S.l], v. 69, p. 101472, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34555503/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1016/j.trim.2021.101472

ABUALROUS, E. T. et al. Major histocompatibility complex (MHC) class I and class II proteins: impact of polymorphism on antigen presentation. Current Opinion in Immunology, [S.l], v. 70, p. 95-104, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34052735/. Acesso em: 06 jun. 2025. DOI: https://doi.org/10.1016/j.coi.2021.04.009

AFLALO, A.; BOYLE, L. H. Polymorphisms in MHC class I molecules influence their interactions with components of the antigen processing and presentation pathway. International Journal of Immunogenetics, Oxford, England, v. 48, n. 4, p. 317-325, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34176210/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1111/iji.12546

ALONSO, G. T. et al. Linfócitos T auxiliares foliculares humanos: células essenciais para a resposta de anticorpos. Einstein, São Paulo, v. 19, eRB6077, 2021. Disponível em: https://www.scielo.br/j/eins/a/5FVnw3RwdFkHTxX5qLXVthH/?lang=pt&format=pdf. Acesso em: 6 jun. 2025.

BOQUETT, J. A. et al. HLA diversity in Brazil. HLA, [S.l.], v. 95, p. 3–14, 2019. DOI: https://doi.org/10.1111/tan.13723

CARRYN, St. et al. Long-term immunogenicity of measles, mumps and rubella-containing vaccines in healthy young children: a 10-year follow-up. Vaccine, [S.l.], v. 37, n. 36, p. 5323-5331, 2019. Disponível ema; https://pubmed.ncbi.nlm.nih.gov/31345639/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1016/j.vaccine.2019.07.049

COWLING, B. J.; OKOLI, G. N. Influenza vaccine effectiveness and progress towards a universal influenza vaccine. Drugs, [S.l.], v. 84, n. 9, p. 1013-1023, 2024. Disponível em: https://pubmed.ncbi.nlm.nih.gov/39167316/. Acesso em: 06 jun. 2025. DOI: https://doi.org/10.1007/s40265-024-02083-8

CROTTY, S. T follicular helper cell biology: A decade of discovery and diseases. Immunity, [S.l.], v. 50, n. 5, p. 1132–1148, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31117010/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1016/j.immuni.2019.04.011

FABRETI-OLIVEIRA, R. A. et al. The heterogeneous HLA genetic composition of the Brazilian population and its relevance to the optimization of hematopoietic stem cell donor recruitment. Tissue Antigens, [S.l.], v. 84, n. 1, p. 187–197, 2014. Disponível em: https://pubmed.ncbi.nlm.nih.gov/24724906/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1111/tan.12352

FAKHKHARI, M.; CAIDI, H.; SADKI, K. HLA alleles associated with COVID-19 susceptibility and severity in different populations: a systematic review. Egyptian Journal of Medical Human Genetics, Cairo, Egito, v. 24, n. 1, p. 10, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36710951/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1186/s43042-023-00390-5

FERNANDES, A. P. M. et al. Bases da imunologia. São Paulo: Atheneu, 2003.

JANEWAY, C. A. et al. Imunobiologia. 9. ed. Porto Alegre: Artmed, 2017.

KAWASHIMA, Y. et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature Reviews Immunology, Hangzhou, China, v. 458, n. 7238, p. 641-645, 2009. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19242411/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1038/nature07746

LIMA-JÚNIOR, J. C. et al. Influence of HLA-DRB1 and HLA-DQB1 Alleles on IgG Antibody Response to the P. vivax MSP-1, MSP-3a and MSP-9 in Individuals from Brazilian Endemic Area. PLoS ONE, San Francisco, EUA, v. 7, n. 5, e36419, 2012. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036419. Acesso em: 05 maio 2025. DOI: https://doi.org/10.1371/journal.pone.0036419

MIGLIORINI, F. et al. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. European Journal of Medical Research,[S.l.], v. 26, n. 1, p. 84, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34344463/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1186/s40001-021-00563-1

OU, G. et al. HLA-DPB1 alleles in hepatitis B vaccine response: a meta-analysis. Medicine, Baltimore, EUA, v. 100, n. 14, p. e24904, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33832070/. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1097/MD.0000000000024904

OVSYANNIKOVA, I. G. et al. A large population-based association study between HLA and KIR genotypes and measles vaccine antibody responses. PLoS ONE, San Francisco, EUA,, v. 12, n. 2, e0171261, 2017. Disponível em: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171261&type=printable. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1371/journal.pone.0171261

OVSYANNIKOVA, I. G. et al. HLA genotypes and rubella vaccine immune response: additional evidence. Vaccine, [S.l.], v. 32, n. 33, p. 4206-4213, 2014. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC4124933/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1016/j.vaccine.2014.04.091

PETERS, B. et al. T Cell Epitope Predictions. Annual Review of Immunology, [S.l.], v. 38, n. 1, p. 83–104, 2020. Disponível em: https://www.annualreviews.org/content/journals/10.1146/annurev-immunol-082119-124838. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1146/annurev-immunol-082119-124838

PISHESHA, N. et al. A guide to antigen processing and presentation. Nature Reviews Immunology, Hangzhou, China, v. 22, n. 12, p. 751-764, 2022. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35418563/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1038/s41577-022-00707-2

POLAND, G. A.; OVSYANIKOVA, I. G.; KENNEDY, R. B. Personalized vaccinology: A review. Vaccine, [S.l.], v. 36, n. 36, p. 5350–5357, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28774561/. Acesso em: 27 maio 2025. DOI: https://doi.org/10.1016/j.vaccine.2017.07.062

SACO, T. V. et al. Hepatitis B vaccine nonresponders: possible mechanisms and solutions. Annals of Allergy, Asthma & Immunology, Colombus, EUA, v. 121, n. 3, p. 320-327, set. 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29567355/. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1016/j.anai.2018.03.017

SAKAI, A. et al. Identification of amino acids in antigen-binding site of class II HLA proteins independently associated with hepatitis B vaccine response. Vaccine, [S.l.], v. 35, n. 47, p. 703-710, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28043736/. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1016/j.vaccine.2016.08.068

SIEGRIST, C. A. Vaccine immunology. In: ORENSTEIN, W. A. et al. Plotkin’s Vaccines. 7. ed. Rio de Janeiro: Elsevier, 2018, p. 16-34. DOI: https://doi.org/10.1016/B978-0-323-35761-6.00002-X

SETTE, A.; CROTTY, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, [S.l.], v. 184, n. 4, p. 861–880, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33497610/. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1016/j.cell.2021.01.007

SONON, P. et al. Human leukocyte antigen (HLA)-F and -G gene polymorphisms and haplotypes are associated with malaria susceptibility in the Beninese Toffin children. Infection, Genetics and Evolution, [S.l.], v. 92, p. 104828, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S1567134821001258?via%3Dihub. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1016/j.meegid.2021.104828

TERAJIMA, M. et al. Identification of vaccinia CD8+ T-cell epitopes conserved among vaccinia and variola viruses restricted by common MHC class I molecules, HLA-A2 or HLA-B7. Human Immunology, Arlington, EUA, v. 67, n. 7, p. 512-520, 2006. Disponível em: https://pubmed.ncbi.nlm.nih.gov/16829305/. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1016/j.humimm.2005.12.004

TERAJIMA, M. et al. Quantitation of CD8+ T cell responses to newly identified HLA-A*0201-restricted T cell epitopes conserved among vaccinia and variola (smallpox) viruses. The Journal of Experimental Medicine, [S.l.], v. 197, n. 7, p. 927-932, 2003. Disponível em: https://pubmed.ncbi.nlm.nih.gov/12668642/. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1084/jem.20022222

TUKWASIBWE, S. et al. Diversity of KIR genes and their HLA-C ligands in Ugandan populations with historically varied malaria transmission intensity. Malaria Journal, [S.l.], v. 20, n. 1, p. 111, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33632228/. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1186/s12936-021-03652-y

WANG, L. et al. Response to hepatitis B vaccination is co-determined by HLA-DPA1 and -DPB1. Vaccine, [S.l.], v. 37, n. 43, p. 6435–6440, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31515149/. Acesso em: 18 jun. 2025. DOI: https://doi.org/10.1016/j.vaccine.2019.09.001

YEWDELL, J. W.; BENNINK, J. R. Immunodominance in major histocompatibility complex class I–restricted T lymphocyte responses. Annual Review of Immunology, [S.l.], v. 39, p. 395–419, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/10358753/. Acesso em: 20 ago. 2025.

ZHANG, L. et al. Human leukocyte antigen (HLA) class I and II genetic relationships with brain imaging measures: a systematic review and meta-analysis. Brain, Behavior and Immunity, New Orleans, USA, v. 128, p. 336–351, 2025. Disponível em: https://pubmed.ncbi.nlm.nih.gov/40222562/. Acesso em: 20 ago. 2025. DOI: https://doi.org/10.1016/j.bbi.2025.04.011

ZHANG, Y. et al. The link between genetic variation and variability in vaccine responses: a narrative review. Journal of Bio-X Research, , [S.l.], v. 5, p. 49-54, 2022. Disponível em: https://spj.science.org/doi/10.1097/JBR.0000000000000122. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1097/JBR.0000000000000122

Downloads

Publicado

2025-09-22

Como Citar

GENES HLA E RESPOSTA VACINAL: UMA REVISÃO NARRATIVA. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 18(1), 1-20. https://doi.org/10.61164/53z6tt45