Beta-thalassemia is a hereditary hemoglobinopathy caused by mutations in the HBB gene, which compromise the synthesis of the β-globin chain of hemoglobin, resulting in chronic anemia and transfusion dependence. Gene therapy based on CRISPR-Cas9 emerges as a promising alternative to correct these mutations, allowing both the direct restoration of β-globin expression and the therapeutic reactivation of fetal hemoglobin (HbF) through the modulation of regulatory elements such as BCL11A. This narrative and analytical literature review examines the main technological and clinical advances related to the use of the CRISPR-Cas9 system and its variants (Cas12a, base editing, and prime editing) in β-thalassemia, with emphasis on genomic safety, therapeutic efficiency, and implementation feasibility. Delivery methods such as RNP, AAV6, and lipid nanoparticles are discussed, in addition to in vivo editing strategies and the integration of artificial intelligence into gRNA design. Despite the progress achieved, challenges persist regarding off-target effects, p53 activation, clonal stability, and the high costs that limit applicability in public health systems, particularly in the Brazilian context. It is concluded that, although still in the translational phase, CRISPR-Cas9 represents one of the most revolutionary tools for the curative treatment of β-thalassemia, paving the way for safer, more precise, and more accessible therapies, in which the biomedical professional plays an essential role in technical validation, monitoring, and laboratory biosafety
DOI:
https://doi.org/10.61164/ef6z6361Keywords:
HBB Gene; Fetal Hemoglobin; Gene Editing; BCL11AAbstract
A β-talassemia é uma hemoglobinopatia hereditária causada por mutações no gene HBB, que comprometem a síntese da cadeia β da hemoglobina, resultando em anemia crônica e dependência transfusional. A terapia gênica baseada em CRISPR-Cas9 surge como uma alternativa promissora para corrigir essas mutações, permitindo tanto a restauração direta da expressão da β-globina quanto a reativação terapêutica da hemoglobina fetal (HbF) por meio da modulação de elementos regulatórios como o BCL11A. Esta revisão bibliográfica, de caráter narrativo e analítico, examina os principais avanços tecnológicos e clínicos relacionados ao uso do sistema CRISPR-Cas9 e suas variantes (Cas12a, base editing e prime editing) na β-talassemia, com ênfase em segurança genômica, eficiência terapêutica e viabilidade de implementação. São abordados métodos de entrega como RNP, AAV6 e nanopartículas lipídicas, além de estratégias de edição in vivo e integração de inteligência artificial no design de gRNAs. Apesar dos progressos, desafios persistem quanto aos efeitos off-target, ativação de p53, estabilidade clonal e custos elevados que limitam a aplicabilidade em sistemas públicos de saúde, especialmente no contexto brasileiro. Conclui-se que, embora ainda em fase translacional, o CRISPR-Cas9 representa uma das ferramentas mais revolucionárias para o tratamento curativo da β-talassemia, abrindo caminho para terapias mais seguras, precisas e acessíveis, nas quais o biomédico desempenha papel essencial na validação técnica, monitoramento e biossegurança laboratorial.
Downloads
References
ALLEMAILEM, Khaled S. et al. Recent advances in genome-editing technology with CRISPR/Cas9 variants and stimuli-responsive targeting approaches within tumor cells: a future perspective of cancer management. International Journal of Molecular Sciences, v. 24, n. 8, p. 7052, 2023 DOI: https://doi.org/10.3390/ijms24087052
ALOTIBI, Raniah S. et al. The frequency and spectrum of HBB gene mutation in β-Thalassemia patients in Saudi Arabia. Journal of Natural Science, Biology and medicine, v. 10, n. 1, p. 97, 2019. DOI: https://doi.org/10.4103/jnsbm.JNSBM_62_18
ANGASTINIOTIS, Michael; LOBITZ, Stephan. Thalassemias: an overview. International Journal of Neonatal Screening, v. 5, n. 1, p. 16, 2019. https://doi.org/10.3390/ijns5010016 DOI: https://doi.org/10.3390/ijns5010016
ARIF, Taqdees et al. Prime editing: A potential treatment option for β‐thalassemia. Cell Biology International, v. 47, n. 4, p. 699-713, 2023. DOI: https://doi.org/10.1002/cbin.11972
ASMAMAW MENGSTIE, Misganaw et al. Recent advancements in reducing the off-target effect of CRISPR-Cas9 genome editing. Biologics: Targets and Therapy, p. 21-28, 2024. DOI: https://doi.org/10.2147/BTT.S429411
CAI, Wenqian et al. Prevalence and genetic analysis of thalassemia in neonates in Wuhan area: a national megacity in central China. The Journal of Maternal-Fetal & Neonatal Medicine, v. 34, n. 14, p. 2240-2247, 2021. https://doi.org/10.1080/14767058.2019.1662780 DOI: https://doi.org/10.1080/14767058.2019.1662780
CHEMELLO, Francesco; OLSON, Eric N.; BASSEL-DUBY, Rhonda. CRISPR-editing therapy for duchenne muscular dystrophy. Human gene therapy, v. 34, n. 9-10, p. 379-387, 2023 DOI: https://doi.org/10.1089/hum.2023.053
COLAH, Roshan; GORAKSHAKAR, Ajit; NADKARNI, Anita. Global burden, distribution and prevention of β-thalassemias and hemoglobin E disorders. Expert Review of Hematology, v. 3, n. 1, p. 103-117, 2010. https://doi.org/10.1586/ehm.09.74 DOI: https://doi.org/10.1586/ehm.09.74
CORNETTA, Kenneth et al. Gene therapy access: Global challenges, opportunities, and views from Brazil, South Africa, and India. Molecular Therapy, v. 30, n. 6, p. 2122-2129, 2022. DOI: https://doi.org/10.1016/j.ymthe.2022.04.002
COSENZA, Lucia Carmela et al. Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Molecular Therapy Methods & Clinical Development, v. 21, p. 507-523, 2021. https://doi.org/10.1016/j.omtm.2021.03.025 DOI: https://doi.org/10.1016/j.omtm.2021.03.025
CUI, Jiesheng; ZHANG, Dini; WANG, Guanyu. Combinatorial application of artificial intelligence and CRISPR/Cas9 on the next-generation CAR-T immunotherapy. AIMS Molecular Science, v. 12, n. 3, p. 292-317, 2025. DOI: https://doi.org/10.3934/molsci.2025018
CULLOT, G. et al. Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR-Cas9. Nature Communications, v. 14, n. 1, p. 4072, 2023. DOI: https://doi.org/10.1038/s41467-023-39632-w
DALIRI, Karim; HESCHELER, Jürgen; PFANNKUCHE, Kurt Paul. Prime Editing and DNA Repair System: Balancing Efficiency with Safety. Cells, v. 13, n. 10, p. 858, 2024. DOI: https://doi.org/10.3390/cells13100858
DEMARTINO, Patrick C. et al. A budget impact analysis of gene therapy for sickle cell disease: an updated analysis. Blood Advances, v. 8, n. 17, p. 4658-4661, 2024. DOI: https://doi.org/10.1182/bloodadvances.2024013093
DEMIRCI, Selami et al. BCL11A+ 58/+ 55 enhancer-editing facilitates HSPC engraftment and HbF induction in rhesus macaques conditioned with a CD45 antibody-drug conjugate. Cell Stem Cell, v. 32, n. 2, p. 209-226. e8, 2025. https://doi.org/10.1016/j.stem.2024.10.014 DOI: https://doi.org/10.1016/j.stem.2024.10.014
DIXIT, Shriniket et al. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Frontiers in bioengineering and biotechnology, v. 11, p. 1335901, 2024. DOI: https://doi.org/10.3389/fbioe.2023.1335901
DORDEVIC, Ana et al. Beta thalassemia syndromes: New insights. World Journal of Clinical Cases, v. 13, n. 10, p. 100223, 2025. DOI: https://doi.org/10.12998/wjcc.v13.i10.100223
DORSET, Sofie R.; BAK, Rasmus O. The p53 challenge of hematopoietic stem cell gene editing. Molecular Therapy Methods & Clinical Development, v. 30, p. 83-89, 2023. DOI: https://doi.org/10.1016/j.omtm.2023.06.003
ESPOSITO, Daina B. et al. Periconceptional nonsteroidal anti‐inflammatory drug use, folic acid intake, and the risk of Spina Bifida. Birth defects research, v. 113, n. 17, p. 1257-1266, 2021. DOI: https://doi.org/10.1002/bdr2.1944
FARD, Ghazaleh Behrouzian et al. CRISPR-Cas9: a prominent genome editing tool in the management of inherited blood disorders and hematological malignancies. Current Research in Translational Medicine, p. 103531, 2025. https://doi.org/10.1016/j.retram.2025.103531 DOI: https://doi.org/10.1016/j.retram.2025.103531
FINOTTI, Alessia; GAMBARI, Roberto. Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: Treatment with HbF inducers and CRISPR-Cas9 based genome editing. Frontiers in Genome Editing, v. 5, p. 1204536, 2023. DOI: https://doi.org/10.3389/fgeed.2023.1204536
FREIRE, Ítalo Aguiar et al. β-Talassemia major: um relato de caso. 2019. DOI: https://doi.org/10.20513/2447-6595.2019v59n2p66-70
GUO, Congting et al. Off-target effects in CRISPR/Cas9 gene editing. Frontiers in bioengineering and biotechnology, v. 11, p. 1143157, 2023. DOI: https://doi.org/10.3389/fbioe.2023.1143157
HARDOUIN, Giulia; MICCIO, Annarita; BRUSSON, Megane. Gene therapy for β-thalassemia: current and future options. Trends in Molecular Medicine, 2025. https://doi.org/10.1016/j.molmed.2024.12.001 DOI: https://doi.org/10.1016/j.molmed.2024.12.001
HU, Jing et al. β-Thalassemia gene editing therapy: Advancements and difficulties. Medicine, v. 103, n. 18, p. e38036, 2024. DOI: https://doi.org/10.1097/MD.0000000000038036
JENSEN, Trine I. et al. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome research, v. 31, n. 11, p. 2120-2130, 2021. DOI: https://doi.org/10.1101/gr.275607.121
JIANG, Haiyan. Genome editing coming of age for hemoglobinopathy. Molecular Therapy, v. 31, n. 3, p. 601-602, 2023. DOI: https://doi.org/10.1016/j.ymthe.2023.02.007
KATTAMIS, Antonis; KWIATKOWSKI, Janet L.; AYDINOK, Yesim. Thalassaemia. The lancet, v. 399, n. 10343, p. 2310-2324, 2022. DOI: https://doi.org/10.1016/S0140-6736(22)00536-0
KOMAL et al. Transformative CRISPR-Cas9 Technologies: A Review of Molecular Mechanisms, Precision Editing Techniques, and Clinical Progress in Sickle Cell Disease. Current Drug Metabolism, 2025. https://doi.org/10.2174/0113892002356293250225094826 DOI: https://doi.org/10.2174/0113892002356293250225094826
LECHAUVE, Christophe et al. Ancestral β-globin gene haplotypes modify β-thalassemia severity in a mouse model. Blood Advances, v. 8, n. 23, p. 5988-5992, 2024. DOI: https://doi.org/10.1182/bloodadvances.2024012681
LEE, Byung-Chul; LOZANO, Richard J.; DUNBAR, Cynthia E. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Molecular Therapy, v. 29, n. 11, p. 3205-3218, 2021. DOI: https://doi.org/10.1016/j.ymthe.2021.09.001
LEE, Tsung-Ling; SAWAI, Tsutomu. Navigating equity in global access to genome therapy expanding access to potentially transformative therapies and benefiting those in need requires global policy changes. Frontiers in Genetics, v. 15, p. 1381172, 2024. DOI: https://doi.org/10.3389/fgene.2024.1381172
LEONARD, Alexis; TISDALE, John F.; BONNER, Melissa. Gene therapy for hemoglobinopathies: beta-thalassemia, sickle cell disease. Hematology/Oncology Clinics, v. 36, n. 4, p. 769-795, 2022. DOI: https://doi.org/10.1016/j.hoc.2022.03.008
LI, Lingli et al. Genetic correction of concurrent α-and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Stem Cell Research & Therapy, v. 13, n. 1, p. 102, 2022. DOI: https://doi.org/10.1186/s13287-022-02768-5
LIAN, Xizhen et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nature nanotechnology, v. 19, n. 9, p. 1409-1417, 2024. DOI: https://doi.org/10.1038/s41565-024-01680-8
LIANG, Qiaowei et al. A more universal approach to comprehensive analysis of thalassemia alleles (CATSA). The Journal of Molecular Diagnostics, v. 23, n. 9, p. 1195-1204, 2021. https://doi.org/10.1016/j.jmoldx.2021.06.008 DOI: https://doi.org/10.1016/j.jmoldx.2021.06.008
LIAO, Hongyu et al. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. Molecular Therapy Nucleic Acids, v. 35, n. 4, 2024. DOI: https://doi.org/10.1016/j.omtn.2024.102344
LOCATELLI, Franco et al. Autologous gene therapy for hemoglobinopathies: From bench to patient’s bedside. Molecular Therapy, v. 32, n. 5, p. 1202-1218, 2024. DOI: https://doi.org/10.1016/j.ymthe.2024.03.005
LOCATELLI, Franco et al. S270: transfusion independence after EXAGAMGLOGENE AUTOTEMCEL in patients with transfusion-dependent ΒETA-thalassemia. HemaSphere, v. 7, n. S3, p. e8473180, 2023. DOI: https://doi.org/10.1097/01.HS9.0000967992.84731.80
LONG, Ju et al. Comprehensive analysis of thalassemia alleles (CATSA) based on third-generation sequencing is a comprehensive and accurate approach for neonatal thalassemia screening. Clinica Chimica Acta, v. 560, p. 119749, 2024. https://doi.org/10.1016/j.cca.2024.119749 DOI: https://doi.org/10.1016/j.cca.2024.119749
LOPES, Andressa; DANTAS, Marina Tejo; LADEIA, Ana Marice Teixeira. Prevalência das complicações cardiovasculares nos indivíduos com anemia falciforme e outras hemoglobinopatias: Uma revisão sistemática. Arquivos Brasileiros de Cardiologia, v. 119, p. 893-899, 2022. DOI: https://doi.org/10.36660/abc.20220207
MAHDIEH, Nejat; RABBANI, Bahareh. Beta thalassemia in 31,734 cases with HBB gene mutations: pathogenic and structural analysis of the common mutations; Iran as the crossroads of the Middle East. Blood reviews, v. 30, n. 6, p. 493-508, 2016. https://doi.org/10.1016/j.blre.2016.07.001 DOI: https://doi.org/10.1016/j.blre.2016.07.001
MAKIS, Alexandros et al. Novel therapeutic advances in β-thalassemia. Biology, v.10, n. 6, p. 546, 2021. DOI: https://doi.org/10.3390/biology10060546
MUÑETÓN-GÓMEZ, César Alfonso et al. Abordaje de las anemias no autoinmunes: Un reto terapéutico. Delta/ß-talasemia. Acta médica colombiana, v. 48, n. 1, p. 3, 2023. DOI: https://doi.org/10.36104/amc.2023.2887
NAEEM, Muhammad; ALKHNBASHI, Omer S. Current bioinformatics tools to optimize CRISPR/Cas9 experiments to reduce off-target effects. International journal of molecular sciences, v. 24, n. 7, p. 6261, 2023. DOI: https://doi.org/10.3390/ijms24076261
NAIISSEH, Basma et al. Context base editing for splice correction of IVSI-110 β-thalassemia. Molecular Therapy Nucleic Acids, v. 35, n. 2, 2024. https://doi.org/10.1016/j.omtn.2024.102183 DOI: https://doi.org/10.1016/j.omtn.2024.102183
PAN, Xiaoguang et al. Massively targeted evaluation of therapeutic CRISPR off-targets in cells. Nature Communications, v. 13, n. 1, p. 4049, 2022 DOI: https://doi.org/10.1038/s41467-022-31543-6
PARUMS, Dinah V. First regulatory approvals for CRISPR-Cas9 therapeutic gene editing for sickle cell disease and transfusion-dependent β-thalassemia. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, v. 30, p. e944204-1, 2024. DOI: https://doi.org/10.12659/MSM.944204
PASCHOUDI, Kiriaki; YANNAKI, Evangelia; PSATHA, Nikoletta. Precision editing as a therapeutic approach for β-hemoglobinopathies. International journal of molecular sciences, v. 24, n. 11, p. 9527, 2023. DOI: https://doi.org/10.3390/ijms24119527
PAVANI, Giulia et al. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood advances, v. 5, n. 5, p. 1137-1153, 2021. DOI: https://doi.org/10.1182/bloodadvances.2020001996
Petrova IO, Smirnikhina SA. The Development, Optimization and Future of Prime Editing. Int J Mol Sci. 2023 Dec 1;24(23):17045. doi: 10.3390/ijms242317045. PMID: 38069367; PMCID: PMC10707272. DOI: https://doi.org/10.3390/ijms242317045
RAHIMMANESH, Ilnaz et al. Gene Editing-Based technologies for Beta-hemoglobinopathies treatment. Biology, v. 11, n. 6, p. 862, 2022. DOI: https://doi.org/10.3390/biology11060862
RAHMAN, Khalil Ur et al. Outcome of Allogeneic Hematopoietic Stem Cell Transplant in Patients with Beta Thalassemia Major: Experience from Resource Constrained Centers. Blood, v. 144, p. 7296, 2024. DOI: https://doi.org/10.1182/blood-2024-210225
RAVI, Nithin Sam et al. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. Elife, v. 11, p. e65421, 2022. DOI: https://doi.org/10.7554/eLife.65421
SCALA, Serena et al. Hematopoietic reconstitution dynamics of mobilized-and bone marrow-derived human hematopoietic stem cells after gene therapy. Nature Communications, v. 14, n. 1, p. 3068, 2023. DOI: https://doi.org/10.1038/s41467-023-38448-y
SCOTT, Tristan; MORRIS, Kevin V. From amputations to antibiotics: A future beyond “hacksaw” gene editing. Molecular Therapy, v. 30, n. 12, p. 3505-3506, 2022. DOI: https://doi.org/10.1016/j.ymthe.2022.11.008
SHANG, Xuan et al. Diretrizes de prática clínica para beta-talassemia. Zhonghua yi xue yi chuan xue za zhi= Zhonghua yixue yichuanxue zazhi= Revista Chinesa de Genética Médica, v. 3, pág. 243-251, 2020. https://doi.org/10.3760/cma.j.issn.1003-9406.2020.03.004
SHI, Honglue et al. Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing. Molecular Cell, v. 85, n. 9, p. 1730-1742. e9, 2025. DOI: https://doi.org/10.1016/j.molcel.2025.03.024
SKEENS, Erin et al. High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9. Science advances, v. 10, n. 10, p. eadl1045, 2024 DOI: https://doi.org/10.1126/sciadv.adl1045
SLAMAN, Ellen et al. Comparison of Cas12a and Cas9-mediated mutagenesis in tomato cells. Scientific Reports, v. 14, n. 1, p. 4508, 2024 DOI: https://doi.org/10.1038/s41598-024-55088-4
STARLARD-DAVENPORT, Athena; GU, Qingqing; PACE, Betty S. Targeting genetic modifiers of HBG gene expression in sickle cell disease: the miRNA option. Molecular Diagnosis & Therapy, v. 26, n. 5, p. 497-509, 2022. https://doi.org/10.1007/s40291-022-00589-z DOI: https://doi.org/10.1007/s40291-022-00589-z
STORER, Eliza Eufrazio. Terapia gênica para pacientes transfusionais de ß-Talassemia. 2023. https://doi.org/10.3324/haematol.2020.278238 DOI: https://doi.org/10.3324/haematol.2020.278238
SU, Yue et al. Screening and treatment of thalassemia. Clinica Chimica Acta, p. 120211, 2025. https://doi.org/10.1016/j.cca.2025.120211 DOI: https://doi.org/10.1016/j.cca.2025.120211
TAO, Rui et al. WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal transduction and targeted therapy, v. 7, n. 1, p. 108, 2022. DOI: https://doi.org/10.1038/s41392-022-00936-w
TESIO, Nicolò; BAUER, Daniel E. Molecular basis and genetic modifiers of thalassemia. Hematology/oncology clinics of North America, v. 37, n. 2, p. 273-299, 2023. DOI: https://doi.org/10.1016/j.hoc.2022.12.001
VINCHI, Francesca. Novel frontiers in gene therapy: In vivo gene editing. HemaSphere, v. 8, n. 1, p. e25, 2024. DOI: https://doi.org/10.1002/hem3.25
WANG, Fangfang; LING, Ling; YU, Duonan. MicroRNAs in β-thalassemia. The American journal of the medical sciences, v. 362, n. 1, p. 5-12, 2021. https://doi.org/10.1016/j.amjms.2021.02.011 DOI: https://doi.org/10.1016/j.amjms.2021.02.011
WANG, Ge et al. Characterization of a novel 8.2 kb deletion causing beta-thalassemia. Clinical Biochemistry, v. 133, p. 110832, 2024. https://doi.org/10.1016/j.clinbiochem.2024.110832 DOI: https://doi.org/10.1016/j.clinbiochem.2024.110832
WEATHERALL, David J. Discurso de abertura: O desafio da talassemia para os países em desenvolvimento. Anais da Academia de Ciências de Nova York , v. 1054, n. 1, p. 11-17, 2005. https://doi.org/10.1196/annals.1345.002 DOI: https://doi.org/10.1196/annals.1345.002
WEI, Bixiao et al. The population incidence of thalassemia gene variants in Baise, Guangxi, PR China, based on random samples. Hematology, v. 27, n. 1, p. 1026-1031, 2022. https://doi.org/10.1080/16078454.2022.2119736 DOI: https://doi.org/10.1080/16078454.2022.2119736
WILKINSON, A. C.; DEVER, D. P.; LEE, L.; BAIK, R.; CABRERA, A. M.; PORTEUS, M. H. Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nature Communications, v. 11, p. 5399, 2020. DOI: https://doi.org/10.1101/2020.10.13.338319
WITKOWSKY, Lea et al. Towards affordable CRISPR genomic therapies: a task force convened by the Innovative Genomics Institute. Gene therapy, v. 30, n. 10, p. 747-752, 2023. DOI: https://doi.org/10.1038/s41434-023-00392-3
XIANG, Xi et al. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nature communications, v. 12, n. 1, p. 3238, 2021. DOI: https://doi.org/10.1038/s41467-021-23576-0
XU, Fang et al. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Frontiers in Pharmacology, v. 15, p. 1364135, 2024. DOI: https://doi.org/10.3389/fphar.2024.1364135
YANG, Fang et al. Wgcna and Lasso Regression-Based Selection and Validation of Microrna Biomarkers of Β-Thalassemia. Available at SSRN 5279136. https://doi.org/10.1016/j.bcmd.2025.102957 DOI: https://doi.org/10.1016/j.bcmd.2025.102957
YANG, Hua et al. Enhanced transduction of human hematopoietic stem cells by AAV6 vectors: implications in gene therapy and genome editing. Molecular Therapy Nucleic Acids, v. 20, p. 451-458, 2020. DOI: https://doi.org/10.1016/j.omtn.2020.03.009
YANG, Yi et al. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. Journal of Biological Chemistry, v. 296, 2021. https://doi.org/10.1016/j.jbc.2021.100464 DOI: https://doi.org/10.1016/j.jbc.2021.100464
YANG, Yinghong et al. In situ correction of various β-thalassemia mutations in human hematopoietic stem cells. Frontiers in Cell and Developmental Biology, v. 11, p. 1276890, 2024. DOI: https://doi.org/10.3389/fcell.2023.1276890
YU, Xia et al. Genetic investigation of haemoglobinopathies in a large cohort of asymptomatic individuals reveals a higher carrier rate for β-thalassaemia in Sichuan Province (Southwestern China). Genes & Diseases, v. 8, n. 2, p. 224-231, 2021. https://doi.org/10.1016/j.gendis.2019.11.001 DOI: https://doi.org/10.1016/j.gendis.2019.11.001
ZANGANEH, Saeed et al. Recent advances and applications of the CRISPR-Cas system in the gene therapy of blood disorders. Gene, v. 931, p. 148865, 2024. https://doi.org/10.1016/j.gene.2024.148865 DOI: https://doi.org/10.1016/j.gene.2024.148865
ZENG, Jing et al. Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells. Cell Stem Cell, v. 32, n. 2, p. 191-208. e11, 2025. https://doi.org/10.1016/j.stem.2024.11.001 DOI: https://doi.org/10.1016/j.stem.2024.11.001
ZEPS, Nikolajs et al. Ethics and regulatory considerations for the clinical translation of somatic cell human epigenetic editing. Stem Cell Reports, v. 16, n. 7, p. 1652-1655, 2021. DOI: https://doi.org/10.1016/j.stemcr.2021.06.004
ZHANG, Zhe et al. Analisando os efeitos de mutações missense que ocorrem naturalmente. Métodos computacionais e matemáticos em medicina , v. 2012, n. 1, p. 805827, 2012. https://doi.org/10.1155/2012/805827 DOI: https://doi.org/10.1155/2012/805827
ZHENG, Biao et al. Efficacy and safety of brl-101, crispr-cas9-mediated gene editing of the BCL11A enhancer in transfusion-dependent β-thalassemia. 2023. DOI: https://doi.org/10.1182/blood-2023-186031
ZHUANG, Jianlong et al. Molecular characterization analysis of thalassemia and hemoglobinopathy in Quanzhou, Southeast China: A large-scale retrospective study. Frontiers in Genetics, v. 12, p. 727233, 2021. DOI: https://doi.org/10.3389/fgene.2021.727233
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Brena André Rodrigues da Silva, André Cavichioli Brito

This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista;
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista, desde que adpatado ao template do repositório em questão;
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
- Os autores são responsáveis por inserir corretamente seus dados, incluindo nome, palavras-chave, resumos e demais informações, definindo assim a forma como desejam ser citados. Dessa forma, o corpo editorial da revista não se responsabiliza por eventuais erros ou inconsistências nesses registros.
POLÍTICA DE PRIVACIDADE
Os nomes e endereços informados nesta revista serão usados exclusivamente para os serviços prestados por esta publicação, não sendo disponibilizados para outras finalidades ou a terceiros.
Obs: todo o conteúdo do trabalho é de responsabilidade do autor e orientador.
