APLICAÇÕES DE CRISPR-CAS9 NA CORREÇÃO DA MUTAÇÃO DA TALASSEMIA BETA: AVANÇOS TECNOLÓGICOS, DESAFIOS TRANSLACIONAIS E PERSPECTIVAS FUTURAS

Autores

  • Brena André Rodrigues da Silva Unibras Rio Verde
  • André Cavichioli Brito Unibras Rio Verde

DOI:

https://doi.org/10.61164/ef6z6361

Palavras-chave:

Gene HBB; Hemoglobina Fetal; Edição Gênica; BCL11A.

Resumo

A β-talassemia é uma hemoglobinopatia hereditária causada por mutações no gene HBB, que comprometem a síntese da cadeia β da hemoglobina, resultando em anemia crônica e dependência transfusional. A terapia gênica baseada em CRISPR-Cas9 surge como uma alternativa promissora para corrigir essas mutações, permitindo tanto a restauração direta da expressão da β-globina quanto a reativação terapêutica da hemoglobina fetal (HbF) por meio da modulação de elementos regulatórios como o BCL11A. Esta revisão bibliográfica, de caráter narrativo e analítico, examina os principais avanços tecnológicos e clínicos relacionados ao uso do sistema CRISPR-Cas9 e suas variantes (Cas12a, base editing e prime editing) na β-talassemia, com ênfase em segurança genômica, eficiência terapêutica e viabilidade de implementação. São abordados métodos de entrega como RNP, AAV6 e nanopartículas lipídicas, além de estratégias de edição in vivo e integração de inteligência artificial no design de gRNAs. Apesar dos progressos, desafios persistem quanto aos efeitos off-target, ativação de p53, estabilidade clonal e custos elevados que limitam a aplicabilidade em sistemas públicos de saúde, especialmente no contexto brasileiro. Conclui-se que, embora ainda em fase translacional, o CRISPR-Cas9 representa uma das ferramentas mais revolucionárias para o tratamento curativo da β-talassemia, abrindo caminho para terapias mais seguras, precisas e acessíveis, nas quais o biomédico desempenha papel essencial na validação técnica, monitoramento e biossegurança laboratorial.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ALLEMAILEM, Khaled S. et al. Recent advances in genome-editing technology with CRISPR/Cas9 variants and stimuli-responsive targeting approaches within tumor cells: a future perspective of cancer management. International Journal of Molecular Sciences, v. 24, n. 8, p. 7052, 2023 DOI: https://doi.org/10.3390/ijms24087052

ALOTIBI, Raniah S. et al. The frequency and spectrum of HBB gene mutation in β-Thalassemia patients in Saudi Arabia. Journal of Natural Science, Biology and medicine, v. 10, n. 1, p. 97, 2019. DOI: https://doi.org/10.4103/jnsbm.JNSBM_62_18

ANGASTINIOTIS, Michael; LOBITZ, Stephan. Thalassemias: an overview. International Journal of Neonatal Screening, v. 5, n. 1, p. 16, 2019. https://doi.org/10.3390/ijns5010016 DOI: https://doi.org/10.3390/ijns5010016

ARIF, Taqdees et al. Prime editing: A potential treatment option for β‐thalassemia. Cell Biology International, v. 47, n. 4, p. 699-713, 2023. DOI: https://doi.org/10.1002/cbin.11972

ASMAMAW MENGSTIE, Misganaw et al. Recent advancements in reducing the off-target effect of CRISPR-Cas9 genome editing. Biologics: Targets and Therapy, p. 21-28, 2024. DOI: https://doi.org/10.2147/BTT.S429411

CAI, Wenqian et al. Prevalence and genetic analysis of thalassemia in neonates in Wuhan area: a national megacity in central China. The Journal of Maternal-Fetal & Neonatal Medicine, v. 34, n. 14, p. 2240-2247, 2021. https://doi.org/10.1080/14767058.2019.1662780 DOI: https://doi.org/10.1080/14767058.2019.1662780

CHEMELLO, Francesco; OLSON, Eric N.; BASSEL-DUBY, Rhonda. CRISPR-editing therapy for duchenne muscular dystrophy. Human gene therapy, v. 34, n. 9-10, p. 379-387, 2023 DOI: https://doi.org/10.1089/hum.2023.053

COLAH, Roshan; GORAKSHAKAR, Ajit; NADKARNI, Anita. Global burden, distribution and prevention of β-thalassemias and hemoglobin E disorders. Expert Review of Hematology, v. 3, n. 1, p. 103-117, 2010. https://doi.org/10.1586/ehm.09.74 DOI: https://doi.org/10.1586/ehm.09.74

CORNETTA, Kenneth et al. Gene therapy access: Global challenges, opportunities, and views from Brazil, South Africa, and India. Molecular Therapy, v. 30, n. 6, p. 2122-2129, 2022. DOI: https://doi.org/10.1016/j.ymthe.2022.04.002

COSENZA, Lucia Carmela et al. Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Molecular Therapy Methods & Clinical Development, v. 21, p. 507-523, 2021. https://doi.org/10.1016/j.omtm.2021.03.025 DOI: https://doi.org/10.1016/j.omtm.2021.03.025

CUI, Jiesheng; ZHANG, Dini; WANG, Guanyu. Combinatorial application of artificial intelligence and CRISPR/Cas9 on the next-generation CAR-T immunotherapy. AIMS Molecular Science, v. 12, n. 3, p. 292-317, 2025. DOI: https://doi.org/10.3934/molsci.2025018

CULLOT, G. et al. Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR-Cas9. Nature Communications, v. 14, n. 1, p. 4072, 2023. DOI: https://doi.org/10.1038/s41467-023-39632-w

DALIRI, Karim; HESCHELER, Jürgen; PFANNKUCHE, Kurt Paul. Prime Editing and DNA Repair System: Balancing Efficiency with Safety. Cells, v. 13, n. 10, p. 858, 2024. DOI: https://doi.org/10.3390/cells13100858

DEMARTINO, Patrick C. et al. A budget impact analysis of gene therapy for sickle cell disease: an updated analysis. Blood Advances, v. 8, n. 17, p. 4658-4661, 2024. DOI: https://doi.org/10.1182/bloodadvances.2024013093

DEMIRCI, Selami et al. BCL11A+ 58/+ 55 enhancer-editing facilitates HSPC engraftment and HbF induction in rhesus macaques conditioned with a CD45 antibody-drug conjugate. Cell Stem Cell, v. 32, n. 2, p. 209-226. e8, 2025. https://doi.org/10.1016/j.stem.2024.10.014 DOI: https://doi.org/10.1016/j.stem.2024.10.014

DIXIT, Shriniket et al. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Frontiers in bioengineering and biotechnology, v. 11, p. 1335901, 2024. DOI: https://doi.org/10.3389/fbioe.2023.1335901

DORDEVIC, Ana et al. Beta thalassemia syndromes: New insights. World Journal of Clinical Cases, v. 13, n. 10, p. 100223, 2025. DOI: https://doi.org/10.12998/wjcc.v13.i10.100223

DORSET, Sofie R.; BAK, Rasmus O. The p53 challenge of hematopoietic stem cell gene editing. Molecular Therapy Methods & Clinical Development, v. 30, p. 83-89, 2023. DOI: https://doi.org/10.1016/j.omtm.2023.06.003

ESPOSITO, Daina B. et al. Periconceptional nonsteroidal anti‐inflammatory drug use, folic acid intake, and the risk of Spina Bifida. Birth defects research, v. 113, n. 17, p. 1257-1266, 2021. DOI: https://doi.org/10.1002/bdr2.1944

FARD, Ghazaleh Behrouzian et al. CRISPR-Cas9: a prominent genome editing tool in the management of inherited blood disorders and hematological malignancies. Current Research in Translational Medicine, p. 103531, 2025. https://doi.org/10.1016/j.retram.2025.103531 DOI: https://doi.org/10.1016/j.retram.2025.103531

FINOTTI, Alessia; GAMBARI, Roberto. Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: Treatment with HbF inducers and CRISPR-Cas9 based genome editing. Frontiers in Genome Editing, v. 5, p. 1204536, 2023. DOI: https://doi.org/10.3389/fgeed.2023.1204536

FREIRE, Ítalo Aguiar et al. β-Talassemia major: um relato de caso. 2019. DOI: https://doi.org/10.20513/2447-6595.2019v59n2p66-70

GUO, Congting et al. Off-target effects in CRISPR/Cas9 gene editing. Frontiers in bioengineering and biotechnology, v. 11, p. 1143157, 2023. DOI: https://doi.org/10.3389/fbioe.2023.1143157

HARDOUIN, Giulia; MICCIO, Annarita; BRUSSON, Megane. Gene therapy for β-thalassemia: current and future options. Trends in Molecular Medicine, 2025. https://doi.org/10.1016/j.molmed.2024.12.001 DOI: https://doi.org/10.1016/j.molmed.2024.12.001

HU, Jing et al. β-Thalassemia gene editing therapy: Advancements and difficulties. Medicine, v. 103, n. 18, p. e38036, 2024. DOI: https://doi.org/10.1097/MD.0000000000038036

JENSEN, Trine I. et al. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome research, v. 31, n. 11, p. 2120-2130, 2021. DOI: https://doi.org/10.1101/gr.275607.121

JIANG, Haiyan. Genome editing coming of age for hemoglobinopathy. Molecular Therapy, v. 31, n. 3, p. 601-602, 2023. DOI: https://doi.org/10.1016/j.ymthe.2023.02.007

KATTAMIS, Antonis; KWIATKOWSKI, Janet L.; AYDINOK, Yesim. Thalassaemia. The lancet, v. 399, n. 10343, p. 2310-2324, 2022. DOI: https://doi.org/10.1016/S0140-6736(22)00536-0

KOMAL et al. Transformative CRISPR-Cas9 Technologies: A Review of Molecular Mechanisms, Precision Editing Techniques, and Clinical Progress in Sickle Cell Disease. Current Drug Metabolism, 2025. https://doi.org/10.2174/0113892002356293250225094826 DOI: https://doi.org/10.2174/0113892002356293250225094826

LECHAUVE, Christophe et al. Ancestral β-globin gene haplotypes modify β-thalassemia severity in a mouse model. Blood Advances, v. 8, n. 23, p. 5988-5992, 2024. DOI: https://doi.org/10.1182/bloodadvances.2024012681

LEE, Byung-Chul; LOZANO, Richard J.; DUNBAR, Cynthia E. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Molecular Therapy, v. 29, n. 11, p. 3205-3218, 2021. DOI: https://doi.org/10.1016/j.ymthe.2021.09.001

LEE, Tsung-Ling; SAWAI, Tsutomu. Navigating equity in global access to genome therapy expanding access to potentially transformative therapies and benefiting those in need requires global policy changes. Frontiers in Genetics, v. 15, p. 1381172, 2024. DOI: https://doi.org/10.3389/fgene.2024.1381172

LEONARD, Alexis; TISDALE, John F.; BONNER, Melissa. Gene therapy for hemoglobinopathies: beta-thalassemia, sickle cell disease. Hematology/Oncology Clinics, v. 36, n. 4, p. 769-795, 2022. DOI: https://doi.org/10.1016/j.hoc.2022.03.008

LI, Lingli et al. Genetic correction of concurrent α-and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Stem Cell Research & Therapy, v. 13, n. 1, p. 102, 2022. DOI: https://doi.org/10.1186/s13287-022-02768-5

LIAN, Xizhen et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nature nanotechnology, v. 19, n. 9, p. 1409-1417, 2024. DOI: https://doi.org/10.1038/s41565-024-01680-8

LIANG, Qiaowei et al. A more universal approach to comprehensive analysis of thalassemia alleles (CATSA). The Journal of Molecular Diagnostics, v. 23, n. 9, p. 1195-1204, 2021. https://doi.org/10.1016/j.jmoldx.2021.06.008 DOI: https://doi.org/10.1016/j.jmoldx.2021.06.008

LIAO, Hongyu et al. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. Molecular Therapy Nucleic Acids, v. 35, n. 4, 2024. DOI: https://doi.org/10.1016/j.omtn.2024.102344

LOCATELLI, Franco et al. Autologous gene therapy for hemoglobinopathies: From bench to patient’s bedside. Molecular Therapy, v. 32, n. 5, p. 1202-1218, 2024. DOI: https://doi.org/10.1016/j.ymthe.2024.03.005

LOCATELLI, Franco et al. S270: transfusion independence after EXAGAMGLOGENE AUTOTEMCEL in patients with transfusion-dependent ΒETA-thalassemia. HemaSphere, v. 7, n. S3, p. e8473180, 2023. DOI: https://doi.org/10.1097/01.HS9.0000967992.84731.80

LONG, Ju et al. Comprehensive analysis of thalassemia alleles (CATSA) based on third-generation sequencing is a comprehensive and accurate approach for neonatal thalassemia screening. Clinica Chimica Acta, v. 560, p. 119749, 2024. https://doi.org/10.1016/j.cca.2024.119749 DOI: https://doi.org/10.1016/j.cca.2024.119749

LOPES, Andressa; DANTAS, Marina Tejo; LADEIA, Ana Marice Teixeira. Prevalência das complicações cardiovasculares nos indivíduos com anemia falciforme e outras hemoglobinopatias: Uma revisão sistemática. Arquivos Brasileiros de Cardiologia, v. 119, p. 893-899, 2022. DOI: https://doi.org/10.36660/abc.20220207

MAHDIEH, Nejat; RABBANI, Bahareh. Beta thalassemia in 31,734 cases with HBB gene mutations: pathogenic and structural analysis of the common mutations; Iran as the crossroads of the Middle East. Blood reviews, v. 30, n. 6, p. 493-508, 2016. https://doi.org/10.1016/j.blre.2016.07.001 DOI: https://doi.org/10.1016/j.blre.2016.07.001

MAKIS, Alexandros et al. Novel therapeutic advances in β-thalassemia. Biology, v.10, n. 6, p. 546, 2021. DOI: https://doi.org/10.3390/biology10060546

MUÑETÓN-GÓMEZ, César Alfonso et al. Abordaje de las anemias no autoinmunes: Un reto terapéutico. Delta/ß-talasemia. Acta médica colombiana, v. 48, n. 1, p. 3, 2023. DOI: https://doi.org/10.36104/amc.2023.2887

NAEEM, Muhammad; ALKHNBASHI, Omer S. Current bioinformatics tools to optimize CRISPR/Cas9 experiments to reduce off-target effects. International journal of molecular sciences, v. 24, n. 7, p. 6261, 2023. DOI: https://doi.org/10.3390/ijms24076261

NAIISSEH, Basma et al. Context base editing for splice correction of IVSI-110 β-thalassemia. Molecular Therapy Nucleic Acids, v. 35, n. 2, 2024. https://doi.org/10.1016/j.omtn.2024.102183 DOI: https://doi.org/10.1016/j.omtn.2024.102183

PAN, Xiaoguang et al. Massively targeted evaluation of therapeutic CRISPR off-targets in cells. Nature Communications, v. 13, n. 1, p. 4049, 2022 DOI: https://doi.org/10.1038/s41467-022-31543-6

PARUMS, Dinah V. First regulatory approvals for CRISPR-Cas9 therapeutic gene editing for sickle cell disease and transfusion-dependent β-thalassemia. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, v. 30, p. e944204-1, 2024. DOI: https://doi.org/10.12659/MSM.944204

PASCHOUDI, Kiriaki; YANNAKI, Evangelia; PSATHA, Nikoletta. Precision editing as a therapeutic approach for β-hemoglobinopathies. International journal of molecular sciences, v. 24, n. 11, p. 9527, 2023. DOI: https://doi.org/10.3390/ijms24119527

PAVANI, Giulia et al. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood advances, v. 5, n. 5, p. 1137-1153, 2021. DOI: https://doi.org/10.1182/bloodadvances.2020001996

Petrova IO, Smirnikhina SA. The Development, Optimization and Future of Prime Editing. Int J Mol Sci. 2023 Dec 1;24(23):17045. doi: 10.3390/ijms242317045. PMID: 38069367; PMCID: PMC10707272. DOI: https://doi.org/10.3390/ijms242317045

RAHIMMANESH, Ilnaz et al. Gene Editing-Based technologies for Beta-hemoglobinopathies treatment. Biology, v. 11, n. 6, p. 862, 2022. DOI: https://doi.org/10.3390/biology11060862

RAHMAN, Khalil Ur et al. Outcome of Allogeneic Hematopoietic Stem Cell Transplant in Patients with Beta Thalassemia Major: Experience from Resource Constrained Centers. Blood, v. 144, p. 7296, 2024. DOI: https://doi.org/10.1182/blood-2024-210225

RAVI, Nithin Sam et al. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. Elife, v. 11, p. e65421, 2022. DOI: https://doi.org/10.7554/eLife.65421

SCALA, Serena et al. Hematopoietic reconstitution dynamics of mobilized-and bone marrow-derived human hematopoietic stem cells after gene therapy. Nature Communications, v. 14, n. 1, p. 3068, 2023. DOI: https://doi.org/10.1038/s41467-023-38448-y

SCOTT, Tristan; MORRIS, Kevin V. From amputations to antibiotics: A future beyond “hacksaw” gene editing. Molecular Therapy, v. 30, n. 12, p. 3505-3506, 2022. DOI: https://doi.org/10.1016/j.ymthe.2022.11.008

SHANG, Xuan et al. Diretrizes de prática clínica para beta-talassemia. Zhonghua yi xue yi chuan xue za zhi= Zhonghua yixue yichuanxue zazhi= Revista Chinesa de Genética Médica, v. 3, pág. 243-251, 2020. https://doi.org/10.3760/cma.j.issn.1003-9406.2020.03.004

SHI, Honglue et al. Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing. Molecular Cell, v. 85, n. 9, p. 1730-1742. e9, 2025. DOI: https://doi.org/10.1016/j.molcel.2025.03.024

SKEENS, Erin et al. High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9. Science advances, v. 10, n. 10, p. eadl1045, 2024 DOI: https://doi.org/10.1126/sciadv.adl1045

SLAMAN, Ellen et al. Comparison of Cas12a and Cas9-mediated mutagenesis in tomato cells. Scientific Reports, v. 14, n. 1, p. 4508, 2024 DOI: https://doi.org/10.1038/s41598-024-55088-4

STARLARD-DAVENPORT, Athena; GU, Qingqing; PACE, Betty S. Targeting genetic modifiers of HBG gene expression in sickle cell disease: the miRNA option. Molecular Diagnosis & Therapy, v. 26, n. 5, p. 497-509, 2022. https://doi.org/10.1007/s40291-022-00589-z DOI: https://doi.org/10.1007/s40291-022-00589-z

STORER, Eliza Eufrazio. Terapia gênica para pacientes transfusionais de ß-Talassemia. 2023. https://doi.org/10.3324/haematol.2020.278238 DOI: https://doi.org/10.3324/haematol.2020.278238

SU, Yue et al. Screening and treatment of thalassemia. Clinica Chimica Acta, p. 120211, 2025. https://doi.org/10.1016/j.cca.2025.120211 DOI: https://doi.org/10.1016/j.cca.2025.120211

TAO, Rui et al. WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal transduction and targeted therapy, v. 7, n. 1, p. 108, 2022. DOI: https://doi.org/10.1038/s41392-022-00936-w

TESIO, Nicolò; BAUER, Daniel E. Molecular basis and genetic modifiers of thalassemia. Hematology/oncology clinics of North America, v. 37, n. 2, p. 273-299, 2023. DOI: https://doi.org/10.1016/j.hoc.2022.12.001

VINCHI, Francesca. Novel frontiers in gene therapy: In vivo gene editing. HemaSphere, v. 8, n. 1, p. e25, 2024. DOI: https://doi.org/10.1002/hem3.25

WANG, Fangfang; LING, Ling; YU, Duonan. MicroRNAs in β-thalassemia. The American journal of the medical sciences, v. 362, n. 1, p. 5-12, 2021. https://doi.org/10.1016/j.amjms.2021.02.011 DOI: https://doi.org/10.1016/j.amjms.2021.02.011

WANG, Ge et al. Characterization of a novel 8.2 kb deletion causing beta-thalassemia. Clinical Biochemistry, v. 133, p. 110832, 2024. https://doi.org/10.1016/j.clinbiochem.2024.110832 DOI: https://doi.org/10.1016/j.clinbiochem.2024.110832

WEATHERALL, David J. Discurso de abertura: O desafio da talassemia para os países em desenvolvimento. Anais da Academia de Ciências de Nova York , v. 1054, n. 1, p. 11-17, 2005. https://doi.org/10.1196/annals.1345.002 DOI: https://doi.org/10.1196/annals.1345.002

WEI, Bixiao et al. The population incidence of thalassemia gene variants in Baise, Guangxi, PR China, based on random samples. Hematology, v. 27, n. 1, p. 1026-1031, 2022. https://doi.org/10.1080/16078454.2022.2119736 DOI: https://doi.org/10.1080/16078454.2022.2119736

WILKINSON, A. C.; DEVER, D. P.; LEE, L.; BAIK, R.; CABRERA, A. M.; PORTEUS, M. H. Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nature Communications, v. 11, p. 5399, 2020. DOI: https://doi.org/10.1101/2020.10.13.338319

WITKOWSKY, Lea et al. Towards affordable CRISPR genomic therapies: a task force convened by the Innovative Genomics Institute. Gene therapy, v. 30, n. 10, p. 747-752, 2023. DOI: https://doi.org/10.1038/s41434-023-00392-3

XIANG, Xi et al. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nature communications, v. 12, n. 1, p. 3238, 2021. DOI: https://doi.org/10.1038/s41467-021-23576-0

XU, Fang et al. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Frontiers in Pharmacology, v. 15, p. 1364135, 2024. DOI: https://doi.org/10.3389/fphar.2024.1364135

YANG, Fang et al. Wgcna and Lasso Regression-Based Selection and Validation of Microrna Biomarkers of Β-Thalassemia. Available at SSRN 5279136. https://doi.org/10.1016/j.bcmd.2025.102957 DOI: https://doi.org/10.1016/j.bcmd.2025.102957

YANG, Hua et al. Enhanced transduction of human hematopoietic stem cells by AAV6 vectors: implications in gene therapy and genome editing. Molecular Therapy Nucleic Acids, v. 20, p. 451-458, 2020. DOI: https://doi.org/10.1016/j.omtn.2020.03.009

YANG, Yi et al. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. Journal of Biological Chemistry, v. 296, 2021. https://doi.org/10.1016/j.jbc.2021.100464 DOI: https://doi.org/10.1016/j.jbc.2021.100464

YANG, Yinghong et al. In situ correction of various β-thalassemia mutations in human hematopoietic stem cells. Frontiers in Cell and Developmental Biology, v. 11, p. 1276890, 2024. DOI: https://doi.org/10.3389/fcell.2023.1276890

YU, Xia et al. Genetic investigation of haemoglobinopathies in a large cohort of asymptomatic individuals reveals a higher carrier rate for β-thalassaemia in Sichuan Province (Southwestern China). Genes & Diseases, v. 8, n. 2, p. 224-231, 2021. https://doi.org/10.1016/j.gendis.2019.11.001 DOI: https://doi.org/10.1016/j.gendis.2019.11.001

ZANGANEH, Saeed et al. Recent advances and applications of the CRISPR-Cas system in the gene therapy of blood disorders. Gene, v. 931, p. 148865, 2024. https://doi.org/10.1016/j.gene.2024.148865 DOI: https://doi.org/10.1016/j.gene.2024.148865

ZENG, Jing et al. Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells. Cell Stem Cell, v. 32, n. 2, p. 191-208. e11, 2025. https://doi.org/10.1016/j.stem.2024.11.001 DOI: https://doi.org/10.1016/j.stem.2024.11.001

ZEPS, Nikolajs et al. Ethics and regulatory considerations for the clinical translation of somatic cell human epigenetic editing. Stem Cell Reports, v. 16, n. 7, p. 1652-1655, 2021. DOI: https://doi.org/10.1016/j.stemcr.2021.06.004

ZHANG, Zhe et al. Analisando os efeitos de mutações missense que ocorrem naturalmente. Métodos computacionais e matemáticos em medicina , v. 2012, n. 1, p. 805827, 2012. https://doi.org/10.1155/2012/805827 DOI: https://doi.org/10.1155/2012/805827

ZHENG, Biao et al. Efficacy and safety of brl-101, crispr-cas9-mediated gene editing of the BCL11A enhancer in transfusion-dependent β-thalassemia. 2023. DOI: https://doi.org/10.1182/blood-2023-186031

ZHUANG, Jianlong et al. Molecular characterization analysis of thalassemia and hemoglobinopathy in Quanzhou, Southeast China: A large-scale retrospective study. Frontiers in Genetics, v. 12, p. 727233, 2021. DOI: https://doi.org/10.3389/fgene.2021.727233

Downloads

Publicado

2025-11-19

Como Citar

APLICAÇÕES DE CRISPR-CAS9 NA CORREÇÃO DA MUTAÇÃO DA TALASSEMIA BETA: AVANÇOS TECNOLÓGICOS, DESAFIOS TRANSLACIONAIS E PERSPECTIVAS FUTURAS. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 20(2), 1-27. https://doi.org/10.61164/ef6z6361