ARTIFICIAL INTELLIGENCE IN THE OPTIMIZATION AND MODELING OF SILK FIBROIN BIOMATERIALS

Authors

  • Enrico Jardim Clemente Santos CELLTROTEC
  • Angela Mazzeo CELLTROTEC

DOI:

https://doi.org/10.61164/s41zs568

Keywords:

Fibroina da Seda; Inteligência Artificial; Machine Learning.

Abstract

Silk fibroin (SF), a natural protein derived from Bombyx mori, is a promising biomaterial due to its biocompatibility, biodegradability, and remarkable mechanical properties. However, optimizing its properties and biomedical applications such as tissue engineering, drug delivery, and biosensors remains a complex challenge. This article explores the emerging intersection between SF and Artificial Intelligence (AI) and how the latter can accelerate discovery, optimization of manufacturing processes, and predictive modeling of SF properties. We discuss the potential of AI to correlate the molecular structure of SF with its macroscopic properties, optimize degumming and solubilization, and predict the performance of scaffolds and nanoparticles. We conclude that the integration of AI represents a transformative paradigm, enabling the creation of next-generation SF biomaterials with enhanced functionality and performance

Downloads

Download data is not yet available.

References

ANDREA A.J. The Silk Road in World History: A Review Essay. Asian Review of World Histories, v.2, p.105–127, 2014. doi: 10.12773/arwh.2014.2.1.105.

CHÁVEZ‐ANGEL, E.; ERIKSEN, M.B.; CASTRO‐ALVAREZ, A.; GARCIA, J.H.; BOTIFOLL, M.; AVALOS-OVANDO, O.; ARBIOL, J.; MUGARZA, A. Applied Artificial Intelligence in Materials Science and Material Design. Advanced Intelligent Systems, 2400986, 2025. doi: 10.1002/aisy.202400986

DE GIORGIO, G.; MATERA, B.; VURRO, D.; MANFREDI, E.; GALSTYAN, V.; TARABELLA, G.; GHEZZI, B.; D'ANGELO, P. Silk Fibroin Materials: Biomedical Applications and Perspectives. Bioengineering (Basel), v.11, n.2, p.167, 2024. doi: 10.3390/bioengineering11020167.

FLORCZAK, A.; DEPTUCH, T.; KUCHARCZYK, K.; DAMS-KOZLOWSKA, H. Systemic and Local Silk-Based Drug Delivery Systems for Cancer Therapy. Cancers, v.13, p.5389, 2021. doi: 10.3390/cancers13215389.

GHALEI, S.; HANDA, H. A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects. Materials Today Chemistry, v.23, p.100673, 2022. doi: 10.1016/j.mtchem.2021.100673.

HUANG, W.; LING, S.; LI, C.; OMENETTO, F.G.; KAPLAN, D.L. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chemical Society Reviews, v.47, p.6486–6504, 2018. doi: 10.1039/C8CS00187A.

Isayev, O., Tropsha, A., Curtarolo, S. Materials Informatics: Methods, Tools and Applications. Ed. 2019. doi:10.1002/9783527802265

Li Y, Chen M, Zhou W, Gao S, Luo X, Peng L, Yan J, Wang P, Li Q, Zheng Y, Liu S, Cheng Y, Guo Q. Cell-free 3D wet-electrospun PCL/silk fibroin/Sr2+ scaffold promotes successful total meniscus regeneration in a rabbit model. Acta Biomater. 2020 Sep 1;113:196-209. doi: 10.1016/j.actbio.2020.06.017.

Li Z, Tan G, Xie H, Lu S. The Application of Regenerated Silk Fibroin in Tissue Repair. Materials (Basel). 2024 Aug 7;17(16):3924. doi: 10.3390/ma17163924.

Ling S., Chen W., Fan Y., Zheng K., Jin K., Yu H., Buehler M.J., Kaplan D.L. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Prog. Polym. Sci. 2018;85:1–56. doi: 10.1016/j.progpolymsci.2018.06.004.

Long S., Xiao Y., Zhang X. Progress in Preparation of Silk Fibroin Microspheres for Biomedical Applications. Pharm. Nanotechnol. 2020;8:358–371. doi: 10.2174/2211738508666201009123235.

Lujerdean C, Baci GM, Cucu AA, Dezmirean DS. The Contribution of Silk Fibroin in Biomedical Engineering. Insects. 2022 Mar 14;13(3):286. doi: 10.3390/insects13030286.

Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol. 2024 Apr 25;12:1381838. doi: 10.3389/fbioe.2024.1381838.

Min K., Kim S., Kim S. Silk protein nanofibers for highly efficient, eco-friendly, optically translucent, and multifunctional air filters. Sci. Rep. 2018;8:9598. doi: 10.1038/s41598-018-27917-w.

Muffly T.M., Tizzano A.P., Walters M.D. The history and evolution of sutures in pelvic surgery. J. R. Soc. Med. 2011;104:107–112. doi: 10.1258/jrsm.2010.100243.

Nuanchai K., Wilaiwan S., Prasong S. Effect of Different Organic Solvents and Treatment Times on Secondary Structure and Thermal Properties of Silk Fibroin Films. Curr. Res. Chem. 2009;2:1–9. doi: 10.3923/crc.2010.1.9.

Pereira R.F.P., Silva M.M., de Zea Bermudez V. Bombyx mori Silk Fibers: An Outstanding Family of Materials. Macromol. Mater. Eng. 2015;300:1171–1198. doi: 10.1002/mame.201400276.

Salehi S., Koeck K., Scheibel T. Spider Silk for Tissue Engineering Applications. Molecules. 2020;25:737. doi: 10.3390/molecules25030737

Sahoo JK, Hasturk O, Falcucci T, Kaplan DL. Silk chemistry and biomedical material designs. Nat Rev Chem. 2023 May;7(5):302-318. doi: 10.1038/s41570-023-00486-x.

Shanmughan, B., Kandasubramanian, B. (2025). Artificial Intelligence Techniques to Predict the Behavior of Silk Fibroin. In: Kandasubramanian, B., Jaya Prakash, N. (eds) Engineering Natural Silk. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-7901-7_11

Sharifani K., Mahyar, A. Machine Learning and Deep Learning: A Review of Methods and Applications. World Information Technology and Engineering Journal, Volume 10, Issue 07, pp. 3897-3904, 2023.

Shaveta. A review on machine learning. International Journal of Science and Research Archive, 2023, 09(01), 281–285. doi: 10.30574/ijsra.2023.9.1.0410

Shi C., Wang J., Sushko M.L., Qiu W., Yan X., Liu X.Y. Silk Flexible Electronics: From Bombyx mori Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators. Adv. Funct. Mater. 2019;29:1904777. doi: 10.1002/adfm.201904777.

Sun W, Gregory DA, Tomeh MA, Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int J Mol Sci. 2021 Feb 2;22(3):1499. doi: 10.3390/ijms22031499.

Rajan K, Mendez P.F. Materials Informatics: The Materials “Gene” and Big Data, Annu. Rev. Mater. Res. 45, 153 (2015).

Vainker S.J. Chinese Silk: A Cultural History. Rutgers Univ. Press; Pistacaway, NJ, USA: 2004. pp. 50–51.

Vepari C, Kaplan DL. Silk as a Biomaterial. Prog Polym Sci. 2007;32(8-9):991-1007. doi: 10.1016/j.progpolymsci.2007.05.013.

Yang C, Wang H, Wang K, Cao Z, Ren F, Zhou G, Chen Y, Sun B. Silk Fibroin-Based Biomemristors for Bionic Artificial Intelligence Robot Applications. ACS Nano. 2025 May 13;19(18):17173-17198. doi: 10.1021/acsnano.5c02480.

Ye J, Xie B, Hu J, Xu X, Lu S, Wang J, Yang L. Recent advances in silk fibroin-based biomaterials for tissue engineering applications. Int J Biol Macromol. 2025 Sep;322(Pt 2):146764. doi: 10.1016/j.ijbiomac.2025.146764.

Xu X., Yeats R.S., Yu G. Cinco curtas rupturas terremoto históricas na superfície próximas à Rota da Seda, Província de Gansu, China. Seismol. Soc. Am. Bull. 2010; 100:541–561. doi: 10.1785/0120080282.

Zhang Q, Liu Z, He Y, Huang T, Yang X, Duan L, Long D, Dai F, Cheng L, Kundu SC. Osteoimmunity-Regulating biospun 3D silk scaffold for bone regeneration in critical-size defects. J Adv Res. 2025 May 12:S2090-1232(25)00276-0. doi: 10.1016/j.jare.2025.04.032.

Zheng, H., & Zuo, B. (2021). Functional silk fibroin hydrogels: preparation, properties and applications. Journal of materials chemistry. B, 9(5), 1238–1258. https://doi.org/10.1039/d0tb02099k

Published

2025-12-05

How to Cite

ARTIFICIAL INTELLIGENCE IN THE OPTIMIZATION AND MODELING OF SILK FIBROIN BIOMATERIALS. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 21(01), 1-21. https://doi.org/10.61164/s41zs568