INTELIGÊNCIA ARTIFICIAL NA OTIMIZAÇÃO E MODELAGEM DE BIOMATERIAIS DE FIBROÍNA DA SEDA

Autores

  • Enrico Jardim Clemente Santos CELLTROTEC
  • Angela Mazzeo CELLTROTEC

DOI:

https://doi.org/10.61164/s41zs568

Palavras-chave:

Fibroina da Seda; Inteligência Artificial; Machine Learning.

Resumo

A fibroína da seda (FS), uma proteína natural derivada do Bombyx mori, é um biomaterial promissor devido à sua biocompatibilidade, biodegradabilidade e notáveis propriedades mecânicas. No entanto, a otimização de suas propriedades e aplicações biomédicas como engenharia de tecidos, liberação de fármacos e biossensores, permanecem desafios complexos. Este artigo explora a intersecção emergente entre a FS e a Inteligência Artificial (IA) e como esta pode acelerar a descoberta, a otimização de processos de fabricação e a modelagem preditiva das propriedades da FS. Discutimos o potencial da IA para correlacionar a estrutura molecular da FS com suas propriedades macroscópicas, otimizar a desgomagem e a solubilização, e prever o desempenho de scaffolds e nanopartículas. Concluímos que a integração da IA representa um paradigma transformador, permitindo a criação de biomateriais de FS de próxima geração com funcionalidade e desempenho aprimorados.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ANDREA A.J. The Silk Road in World History: A Review Essay. Asian Review of World Histories, v.2, p.105–127, 2014. doi: 10.12773/arwh.2014.2.1.105.

CHÁVEZ‐ANGEL, E.; ERIKSEN, M.B.; CASTRO‐ALVAREZ, A.; GARCIA, J.H.; BOTIFOLL, M.; AVALOS-OVANDO, O.; ARBIOL, J.; MUGARZA, A. Applied Artificial Intelligence in Materials Science and Material Design. Advanced Intelligent Systems, 2400986, 2025. doi: 10.1002/aisy.202400986

DE GIORGIO, G.; MATERA, B.; VURRO, D.; MANFREDI, E.; GALSTYAN, V.; TARABELLA, G.; GHEZZI, B.; D'ANGELO, P. Silk Fibroin Materials: Biomedical Applications and Perspectives. Bioengineering (Basel), v.11, n.2, p.167, 2024. doi: 10.3390/bioengineering11020167.

FLORCZAK, A.; DEPTUCH, T.; KUCHARCZYK, K.; DAMS-KOZLOWSKA, H. Systemic and Local Silk-Based Drug Delivery Systems for Cancer Therapy. Cancers, v.13, p.5389, 2021. doi: 10.3390/cancers13215389.

GHALEI, S.; HANDA, H. A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects. Materials Today Chemistry, v.23, p.100673, 2022. doi: 10.1016/j.mtchem.2021.100673.

HUANG, W.; LING, S.; LI, C.; OMENETTO, F.G.; KAPLAN, D.L. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chemical Society Reviews, v.47, p.6486–6504, 2018. doi: 10.1039/C8CS00187A.

Isayev, O., Tropsha, A., Curtarolo, S. Materials Informatics: Methods, Tools and Applications. Ed. 2019. doi:10.1002/9783527802265

Li Y, Chen M, Zhou W, Gao S, Luo X, Peng L, Yan J, Wang P, Li Q, Zheng Y, Liu S, Cheng Y, Guo Q. Cell-free 3D wet-electrospun PCL/silk fibroin/Sr2+ scaffold promotes successful total meniscus regeneration in a rabbit model. Acta Biomater. 2020 Sep 1;113:196-209. doi: 10.1016/j.actbio.2020.06.017.

Li Z, Tan G, Xie H, Lu S. The Application of Regenerated Silk Fibroin in Tissue Repair. Materials (Basel). 2024 Aug 7;17(16):3924. doi: 10.3390/ma17163924.

Ling S., Chen W., Fan Y., Zheng K., Jin K., Yu H., Buehler M.J., Kaplan D.L. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Prog. Polym. Sci. 2018;85:1–56. doi: 10.1016/j.progpolymsci.2018.06.004.

Long S., Xiao Y., Zhang X. Progress in Preparation of Silk Fibroin Microspheres for Biomedical Applications. Pharm. Nanotechnol. 2020;8:358–371. doi: 10.2174/2211738508666201009123235.

Lujerdean C, Baci GM, Cucu AA, Dezmirean DS. The Contribution of Silk Fibroin in Biomedical Engineering. Insects. 2022 Mar 14;13(3):286. doi: 10.3390/insects13030286.

Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol. 2024 Apr 25;12:1381838. doi: 10.3389/fbioe.2024.1381838.

Min K., Kim S., Kim S. Silk protein nanofibers for highly efficient, eco-friendly, optically translucent, and multifunctional air filters. Sci. Rep. 2018;8:9598. doi: 10.1038/s41598-018-27917-w.

Muffly T.M., Tizzano A.P., Walters M.D. The history and evolution of sutures in pelvic surgery. J. R. Soc. Med. 2011;104:107–112. doi: 10.1258/jrsm.2010.100243.

Nuanchai K., Wilaiwan S., Prasong S. Effect of Different Organic Solvents and Treatment Times on Secondary Structure and Thermal Properties of Silk Fibroin Films. Curr. Res. Chem. 2009;2:1–9. doi: 10.3923/crc.2010.1.9.

Pereira R.F.P., Silva M.M., de Zea Bermudez V. Bombyx mori Silk Fibers: An Outstanding Family of Materials. Macromol. Mater. Eng. 2015;300:1171–1198. doi: 10.1002/mame.201400276.

Salehi S., Koeck K., Scheibel T. Spider Silk for Tissue Engineering Applications. Molecules. 2020;25:737. doi: 10.3390/molecules25030737

Sahoo JK, Hasturk O, Falcucci T, Kaplan DL. Silk chemistry and biomedical material designs. Nat Rev Chem. 2023 May;7(5):302-318. doi: 10.1038/s41570-023-00486-x.

Shanmughan, B., Kandasubramanian, B. (2025). Artificial Intelligence Techniques to Predict the Behavior of Silk Fibroin. In: Kandasubramanian, B., Jaya Prakash, N. (eds) Engineering Natural Silk. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-7901-7_11

Sharifani K., Mahyar, A. Machine Learning and Deep Learning: A Review of Methods and Applications. World Information Technology and Engineering Journal, Volume 10, Issue 07, pp. 3897-3904, 2023.

Shaveta. A review on machine learning. International Journal of Science and Research Archive, 2023, 09(01), 281–285. doi: 10.30574/ijsra.2023.9.1.0410

Shi C., Wang J., Sushko M.L., Qiu W., Yan X., Liu X.Y. Silk Flexible Electronics: From Bombyx mori Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators. Adv. Funct. Mater. 2019;29:1904777. doi: 10.1002/adfm.201904777.

Sun W, Gregory DA, Tomeh MA, Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int J Mol Sci. 2021 Feb 2;22(3):1499. doi: 10.3390/ijms22031499.

Rajan K, Mendez P.F. Materials Informatics: The Materials “Gene” and Big Data, Annu. Rev. Mater. Res. 45, 153 (2015).

Vainker S.J. Chinese Silk: A Cultural History. Rutgers Univ. Press; Pistacaway, NJ, USA: 2004. pp. 50–51.

Vepari C, Kaplan DL. Silk as a Biomaterial. Prog Polym Sci. 2007;32(8-9):991-1007. doi: 10.1016/j.progpolymsci.2007.05.013.

Yang C, Wang H, Wang K, Cao Z, Ren F, Zhou G, Chen Y, Sun B. Silk Fibroin-Based Biomemristors for Bionic Artificial Intelligence Robot Applications. ACS Nano. 2025 May 13;19(18):17173-17198. doi: 10.1021/acsnano.5c02480.

Ye J, Xie B, Hu J, Xu X, Lu S, Wang J, Yang L. Recent advances in silk fibroin-based biomaterials for tissue engineering applications. Int J Biol Macromol. 2025 Sep;322(Pt 2):146764. doi: 10.1016/j.ijbiomac.2025.146764.

Xu X., Yeats R.S., Yu G. Cinco curtas rupturas terremoto históricas na superfície próximas à Rota da Seda, Província de Gansu, China. Seismol. Soc. Am. Bull. 2010; 100:541–561. doi: 10.1785/0120080282.

Zhang Q, Liu Z, He Y, Huang T, Yang X, Duan L, Long D, Dai F, Cheng L, Kundu SC. Osteoimmunity-Regulating biospun 3D silk scaffold for bone regeneration in critical-size defects. J Adv Res. 2025 May 12:S2090-1232(25)00276-0. doi: 10.1016/j.jare.2025.04.032.

Zheng, H., & Zuo, B. (2021). Functional silk fibroin hydrogels: preparation, properties and applications. Journal of materials chemistry. B, 9(5), 1238–1258. https://doi.org/10.1039/d0tb02099k

Downloads

Publicado

2025-12-05

Como Citar

INTELIGÊNCIA ARTIFICIAL NA OTIMIZAÇÃO E MODELAGEM DE BIOMATERIAIS DE FIBROÍNA DA SEDA. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 21(01), 1-21. https://doi.org/10.61164/s41zs568