REAL-TIME MONITORING OF HIGH-POTENTIAL STEM CELLS AS AN INNOVATIVE BIOLOGICAL ELEMENT IN BIOSENSORS

Authors

DOI:

https://doi.org/10.61164/hx215f69

Keywords:

Biossensores; Células-tronco embrionárias; Biossensores de células; Monitoramento.

Abstract

The convergence between stem cell biotechnology and biosensor technology represents a significant advance for drug screening and regenerative medicine. Embryonic stem cells (ESCs), characterized by their pluripotency and self-renewal capacity, offer a renewable and physiologically relevant cell source for the construction of cell-based biosensors (CBSs). Despite technical challenges related to maintaining cell viability and standardization, the field is advancing toward integrated Lab-on-a-Chip systems and single-cell biosensors, promising to revolutionize high-throughput pharmacology and personalized medicine. In this article, we discuss compatible transduction platforms, such as Microelectrode Arrays (MEAs) and Light-Addressable Potentiometric Sensors (LAPS), and the role of surface nanoengineering in optimizing the cell-transducer interface. Key applications include screening for cardiotoxicity and neurotoxicity of new drugs, real-time monitoring of cell differentiation, and detection of environmental toxicity. This article explores the fundamentals of this integration, highlighting ESCs (or their differentiated derivatives) as biological recognition elements that convert cellular responses to external stimuli into measurable signals.

Downloads

Download data is not yet available.

References

AI, Z.; NIU. B.; YIN, Y.; XIANG, L.; SHI, G.; DUAN, K.; WANG, S.; HU, Y.; ZHANG, C.; ZHANG, C.; RONG, L.; KONG, R.; CHEN, T.; GUO, Y.; LIU, W.; LI, N.; ZHAO, S.; ZHU, X.; MAI, X.; LI, Y.; WU, Z.; ZHENG, Y.; FU, J.; JI, W.; LI, T. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Research, v. 33, n.9, p. 661-678, 2023. doi: 10.1038/s41422-023-00846-8. DOI: https://doi.org/10.1038/s41422-023-00846-8

AYDIN, T.; GURCAN, C.; TAHERI, H.; YILMAZER, A. Graphene Based Materials in Neural Tissue Regeneration. Adv Exp Med Biology, v.1107, p.129-142, 2018. doi: 10.1007/5584_2018_221. DOI: https://doi.org/10.1007/5584_2018_221

CHALKLEN, T.; JING, Q.; KAR-NARAYAN, S. Biosensors Based on Mechanical and Electrical Detection Techniques. Sensors (Basel), v.20, n.19, p.5605, 2020. doi: 10.3390/s20195605. DOI: https://doi.org/10.3390/s20195605

CHITHRANI, D. B. Optimization of Bio-Nano Interface Using Gold Nanostructures as a Model Nanoparticle System. Insciences Journal, v.1, n.3, 115-135, 2011. doi:10.5640/insc.0103115 DOI: https://doi.org/10.5640/insc.0103115

DIENEMANN, S.; WOHLENBERG, O. J.; GERSTENBERGER, J.G.; LAVRENTIEVA, A.; PEPELANOVA, I. 3D culture of neural progenitor cells in gelatin norbornene (GelNB) hydrogels: mechanical tuning and hypoxia characterization. Front Bioeng Biotechnology, v.13, p.1579580, 2025. doi: 10.3389/fbioe.2025.1579580. DOI: https://doi.org/10.3389/fbioe.2025.1579580

DORMEYER, W.; VAN, HOOF D.; BRAAM, S.R.; HECK, A.J.; MUMMERY, C.L.; KRIJGSVELD, J. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J Proteome Research, v.7, n.7, p.2936-51, 2008. doi: 10.1021/pr800056j. DOI: https://doi.org/10.1021/pr800056j

FAROUK, M.; EL-HAMEED, A.S.A.; ELDAMAK, A.R.; ELSHEAKH, D.N. Noninvasive blood glucose monitoring using a dual band microwave sensor with machine learning. Scientific Reports, v.15, n.1, p.16271, 2025. doi: 10.1038/s41598-025-94367-6. DOI: https://doi.org/10.1038/s41598-025-94367-6

FATHI, F.; RAHBARGHAZI, R.; RASHIDI, M.R. Label-free biosensors in the field of stem cell biology. Biosens Bioelectron. 2018 Mar 15;101:188-198. doi: 10.1016/j.bios.2017.10.028. DOI: https://doi.org/10.1016/j.bios.2017.10.028

GARCIA-JUNIOR, M.A.; ANDRADE, B.S.; LIMA, A.P.; SOARES, I.P.; NOTÁRIO, A.F.O.; BERNARDINO, S.S.; GUEVARA-VEJA, M.F.; HONÓRIO-SILVA, G.; MUNOZ, R.A.A.; JARDIM, A.C.G.; MARTINS, M.M.; GOULART, L.R.; CUNHA, T.M.; CARNEIRO, M.G.; SABINO-SILVA, R. Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. Biosensors (Basel), v.15, n.2, p.75, 2025. doi: 10.3390/bios15020075. DOI: https://doi.org/10.3390/bios15020075

GILL, B.J.; GIBBONS, D.L.; ROUDSARI, L.C.; SAIK, J.E.; RIZVI, Z.H.; ROYBAL, J.D.; KURIE, J.M.; WEST, J.L. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Research, v.72, n.22, p.6013-23, 2012. doi: 10.1158/0008-5472.CAN-12-0895. DOI: https://doi.org/10.1158/0008-5472.CAN-12-0895

HO, H.Y.; LI, M. Potential application of embryonic stem cells in Parkinson's disease: drug screening and cell therapy. Regenerative Medicine, v.1, n.2, p.175-82, 2006. doi: 10.2217/17460751.1.2.175. DOI: https://doi.org/10.2217/17460751.1.2.175

KIM, D.; KIM, S.B.; RYU, J.L.; HONG, H.; CHANG, J.H.; YOO, T.J.; JIN, X.; PARK, H.J.; HAN, C.; LEE, B.H.; CHOI, J.H.; YOO, H.W.; KIM, J.H.; WOO, D.H. Human Embryonic Stem Cell-Derived Wilson's Disease Model for Screening Drug Efficacy. Cells, v.9, n.4, p.872, 2020. doi: 10.3390/cells9040872. DOI: https://doi.org/10.3390/cells9040872

KANG, M.J.; CHO, Y.W.; KIM, T.H. Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. Biosensors (Basel), v.13, n.5, p.501, 2023. doi: 10.3390/bios13050501. DOI: https://doi.org/10.3390/bios13050501

KEUSGEN, M. Biosensors: new approaches in drug discovery. Naturwissenschaften, v.89, n.10, p.433-44, 2002. doi: 10.1007/s00114-002-0358-3. DOI: https://doi.org/10.1007/s00114-002-0358-3

LEE, E.; CHOI, H.K.; KWON, Y.; LEE, K.B. Real-Time, Non-Invasive Monitoring of Neuronal Differentiation Using Intein-Enabled Fluorescence Signal Translocation in Genetically Encoded Stem Cell-Based Biosensors. Advanced Functional Materials, v.34, n.29, p.2400394, 2024. doi: 10.1002/adfm.202400394. DOI: https://doi.org/10.1002/adfm.202400394

LI. K.; HUNTWORK, R.H.C.; HORN, G.Q.; ALAM, S.M.; TOMARAS, G.D.; DENNISON, S.M. TitrationAnalysis: a tool for high throughput binding kinetics data analysis for multiple label-free platforms. Gates Open Research, v.7, p.107, 2024. doi: 10.12688/gatesopenres.14743.2. DOI: https://doi.org/10.12688/gatesopenres.14743.2

LIU, Q.; CA, H.; XIAO, L.; LI, R.; YANG, M.; WANG, P. Embryonic Stem Cells Biosensor and Its Application in Drug Analysis and Toxin Detection. in IEEE Sensors Journal, vol. 7, no. 12, pp. 1625-1631, 2007a. doi: 10.1109/JSEN.2007.908439. DOI: https://doi.org/10.1109/JSEN.2007.908439

LIU, Q.; HUANG, H.; CAI, H.; XU, Y.; LI, Y.; LI, R.; WANG, P. Embryonic stem cells as a novel cell source of cell-based biosensors. Biosens Bioelectron, v.22, n.6, p.810-5, 2007b. doi: 10.1016/j.bios.2006.03.006. DOI: https://doi.org/10.1016/j.bios.2006.03.006

MOLÈ, M.A.; COORENS, T.H.H.; SHAHBAZI, M.N.; WEBERLING, A.; WEATHERBEE, B.A.T.; GANTNER, C.W.; SANCHO-SERRA, C.; RICHARDSON, L.; DRINKWATER, A.; SYED, N.; ENGLEY, S.; SNELL, P.; CHRISTIE, L.; ELDER, K.; CAMPBELL, A.; FISHEL, S.; BEHJATI, S.; VENTO-TORMO, R.; ZERNICKA-GOETZ, M. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat Communications, v.12, n.1, p.3679, 2021. doi: 10.1038/s41467-021-23758-w. DOI: https://doi.org/10.1038/s41467-021-23758-w

NOSRATI, H.; NOSRATI, M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics (Basel), v.8, n.5, p.442, 2023. doi: 10.3390/biomimetics8050442. DOI: https://doi.org/10.3390/biomimetics8050442

ONO, T.; OKUDA, S.; USHIBA, S.; KANAI, Y.; MATSUMOTO, K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. Materials (Basel), v.17, n.2, p.333, 2024. doi: 10.3390/ma17020333. DOI: https://doi.org/10.3390/ma17020333

PENG, Y.; XIE, M.; DUAN, X.; HU, L.; YU, J.; ZENG, S.; WANG, Y.; OUYANG, Q.; LU, G.; LIN, G.; SUN, Y. Generation of a luciferase-expressing human embryonic stem cell line: NERCe002-A-2. Stem Cell Research, v.28, p.172-176, 2018. doi: 10.1016/j.scr.2018.02.010. DOI: https://doi.org/10.1016/j.scr.2018.02.010

PEREIRA, A. S.; SHITSUKA, D. M.; PEREIRA, F. J.; SHITSUKA, R. Metodologia da pesquisa científica. Santa Maria: 1⸰ed. UFSM. 2018, 119p. Disponível em:< https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf> Acesso em: 21 de novembro de 2025

SABRIN, S.; KARMOKAR, D.K.; KARMAKAR, N.C.; HONG, S.H.; HABIBULLAH, H.; SZILI, E.J. Opportunities of Electronic and Optical Sensors in Autonomous Medical Plasma Technologies. ACS Sensors, v.8, n.3, p.974-993, 2023. doi: 10.1021/acssensors.2c02579. DOI: https://doi.org/10.1021/acssensors.2c02579

SANO, T.; ZHANG, H.; LOSAKUL, R.; SCHMIDT, H. All-in-One Optofluidic Chip for Molecular Biosensing Assays. Biosensors (Basel), v.12, n.7, p.501, 2022. doi: 10.3390/bios12070501. DOI: https://doi.org/10.3390/bios12070501

SHAHBAZI, M.N.; WANG, T.; TAO, X; WEATHERBEE, B.A.T.; SUN, L.; ZHAN, Y.; KELLER, L.; SMITH, G.D.; PELLICER, A.; SCOTT, R.T. JR.; SELI, E.; ZERNICKA-GOETZ. M. Developmental potential of aneuploid human embryos cultured beyond implantation. Nat Communications, v.11, n.1, p.3987, 2020. doi: 10.1038/s41467-020-17764-7. DOI: https://doi.org/10.1038/s41467-020-17764-7

SHI, Y.; KOPPARAPU, N.; OHLER, L.; DICKINSON, D.J. Efficient and rapid fluorescent protein knock-in with universal donors in mouse embryonic stem cells. Development, v.150, p.10, dev201367, 2023. doi: 10.1242/dev.201367. DOI: https://doi.org/10.1242/dev.201367

Singh, S.; Podder, P.S.; Russo, M.; Henry, C.; Cinti, S. Tailored point-of-care biosensors for liquid biopsy in the field of oncology. Lab Chip, v.23, n.1, p.44-61, 2022. doi: 10.1039/d2lc00666a. DOI: https://doi.org/10.1039/D2LC00666A

STANLEY, S.A.; GAGNER, J.E.; DAMANPOUR, S.; YOSHIDA, M.; DORDICK, J.S.; FRIEDMAN, J.M. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 2012 May 4;336(6081):604-8. doi: 10.1126/science.1216753. DOI: https://doi.org/10.1126/science.1216753

TIAN, Z.; YU, T.; LIU, J.; WANG, T.; HIGUCHI, A. Introduction to stem cells. Progress in Molecular Biology and Translational Science, v.199, p.3-32, 2023. doi: 10.1016/bs.pmbts.2023.02.012. DOI: https://doi.org/10.1016/bs.pmbts.2023.02.012

VARVAŘOVSKÁ, L.; KUDRNA, P.; SOPKO, B.; JAROŠÍKOVÁ, T. The Development of a Specific Nanofiber Bioreceptor for Detection of Escherichia coli and Staphylococcus aureus from Air. Biosensors (Basel), v.14, n.5, p.234, 2024. doi: 10.3390/bios14050234. DOI: https://doi.org/10.3390/bios14050234

WANG, S.; RIAHI, R.; LI, N.; ZHANG, D.D.; WONG, P.K. Single cell nanobiosensors for dynamic gene expression profiling in native tissue microenvironments. Advanced Functional Materials, v.27, n.39, p.6034-8, 2015. doi: 10.1002/adma.201502814. DOI: https://doi.org/10.1002/adma.201502814

WNOROWSKI, A.; YANG, H.; WU, J.C. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Advanced Drug Delivery Reviews, v.140, p.3-11, 2019. doi: 10.1016/j.addr.2018.06.001. DOI: https://doi.org/10.1016/j.addr.2018.06.001

ZHANG, W.; ZHAO, Y.; YANG, Z.; YAN, J.; WANG, H.; NIE, S.; JIA, Q.; DING, D.; TONG, C.; ZHANG, X.O.; GAO, Q.; SHUAI, L. Capture of Totipotency in Mouse Embryonic Stem Cells in the Absence of Pdzk1. Adv Sci (Weinh), v.12, n.6, p.e2408852, 2025. doi: 10.1002/advs.202408852. DOI: https://doi.org/10.1002/advs.202408852

ZHOU, Y.; BASU, S.; LAUE, E.; SESHIA, A.A. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens Bioelectronics, v.81, p.249-258, 2016. doi: 10.1016/j.bios.2016.02.069. DOI: https://doi.org/10.1016/j.bios.2016.02.069

ZIEGLER, C. Cell-based biosensors. Fresenius' Journal of Analytical Chemistry, v.366, n.6-7, p.552-9, 2000. doi: 10.1007/s002160051550. DOI: https://doi.org/10.1007/s002160051550

Published

2025-11-28

How to Cite

REAL-TIME MONITORING OF HIGH-POTENTIAL STEM CELLS AS AN INNOVATIVE BIOLOGICAL ELEMENT IN BIOSENSORS. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 20(03), 1-20. https://doi.org/10.61164/hx215f69