REAL-TIME MONITORING OF HIGH-POTENTIAL STEM CELLS AS AN INNOVATIVE BIOLOGICAL ELEMENT IN BIOSENSORS
DOI:
https://doi.org/10.61164/hx215f69Keywords:
Biossensores; Células-tronco embrionárias; Biossensores de células; Monitoramento.Abstract
The convergence between stem cell biotechnology and biosensor technology represents a significant advance for drug screening and regenerative medicine. Embryonic stem cells (ESCs), characterized by their pluripotency and self-renewal capacity, offer a renewable and physiologically relevant cell source for the construction of cell-based biosensors (CBSs). Despite technical challenges related to maintaining cell viability and standardization, the field is advancing toward integrated Lab-on-a-Chip systems and single-cell biosensors, promising to revolutionize high-throughput pharmacology and personalized medicine. In this article, we discuss compatible transduction platforms, such as Microelectrode Arrays (MEAs) and Light-Addressable Potentiometric Sensors (LAPS), and the role of surface nanoengineering in optimizing the cell-transducer interface. Key applications include screening for cardiotoxicity and neurotoxicity of new drugs, real-time monitoring of cell differentiation, and detection of environmental toxicity. This article explores the fundamentals of this integration, highlighting ESCs (or their differentiated derivatives) as biological recognition elements that convert cellular responses to external stimuli into measurable signals.
Downloads
References
AI, Z.; NIU. B.; YIN, Y.; XIANG, L.; SHI, G.; DUAN, K.; WANG, S.; HU, Y.; ZHANG, C.; ZHANG, C.; RONG, L.; KONG, R.; CHEN, T.; GUO, Y.; LIU, W.; LI, N.; ZHAO, S.; ZHU, X.; MAI, X.; LI, Y.; WU, Z.; ZHENG, Y.; FU, J.; JI, W.; LI, T. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Research, v. 33, n.9, p. 661-678, 2023. doi: 10.1038/s41422-023-00846-8. DOI: https://doi.org/10.1038/s41422-023-00846-8
AYDIN, T.; GURCAN, C.; TAHERI, H.; YILMAZER, A. Graphene Based Materials in Neural Tissue Regeneration. Adv Exp Med Biology, v.1107, p.129-142, 2018. doi: 10.1007/5584_2018_221. DOI: https://doi.org/10.1007/5584_2018_221
CHALKLEN, T.; JING, Q.; KAR-NARAYAN, S. Biosensors Based on Mechanical and Electrical Detection Techniques. Sensors (Basel), v.20, n.19, p.5605, 2020. doi: 10.3390/s20195605. DOI: https://doi.org/10.3390/s20195605
CHITHRANI, D. B. Optimization of Bio-Nano Interface Using Gold Nanostructures as a Model Nanoparticle System. Insciences Journal, v.1, n.3, 115-135, 2011. doi:10.5640/insc.0103115 DOI: https://doi.org/10.5640/insc.0103115
DIENEMANN, S.; WOHLENBERG, O. J.; GERSTENBERGER, J.G.; LAVRENTIEVA, A.; PEPELANOVA, I. 3D culture of neural progenitor cells in gelatin norbornene (GelNB) hydrogels: mechanical tuning and hypoxia characterization. Front Bioeng Biotechnology, v.13, p.1579580, 2025. doi: 10.3389/fbioe.2025.1579580. DOI: https://doi.org/10.3389/fbioe.2025.1579580
DORMEYER, W.; VAN, HOOF D.; BRAAM, S.R.; HECK, A.J.; MUMMERY, C.L.; KRIJGSVELD, J. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J Proteome Research, v.7, n.7, p.2936-51, 2008. doi: 10.1021/pr800056j. DOI: https://doi.org/10.1021/pr800056j
FAROUK, M.; EL-HAMEED, A.S.A.; ELDAMAK, A.R.; ELSHEAKH, D.N. Noninvasive blood glucose monitoring using a dual band microwave sensor with machine learning. Scientific Reports, v.15, n.1, p.16271, 2025. doi: 10.1038/s41598-025-94367-6. DOI: https://doi.org/10.1038/s41598-025-94367-6
FATHI, F.; RAHBARGHAZI, R.; RASHIDI, M.R. Label-free biosensors in the field of stem cell biology. Biosens Bioelectron. 2018 Mar 15;101:188-198. doi: 10.1016/j.bios.2017.10.028. DOI: https://doi.org/10.1016/j.bios.2017.10.028
GARCIA-JUNIOR, M.A.; ANDRADE, B.S.; LIMA, A.P.; SOARES, I.P.; NOTÁRIO, A.F.O.; BERNARDINO, S.S.; GUEVARA-VEJA, M.F.; HONÓRIO-SILVA, G.; MUNOZ, R.A.A.; JARDIM, A.C.G.; MARTINS, M.M.; GOULART, L.R.; CUNHA, T.M.; CARNEIRO, M.G.; SABINO-SILVA, R. Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. Biosensors (Basel), v.15, n.2, p.75, 2025. doi: 10.3390/bios15020075. DOI: https://doi.org/10.3390/bios15020075
GILL, B.J.; GIBBONS, D.L.; ROUDSARI, L.C.; SAIK, J.E.; RIZVI, Z.H.; ROYBAL, J.D.; KURIE, J.M.; WEST, J.L. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Research, v.72, n.22, p.6013-23, 2012. doi: 10.1158/0008-5472.CAN-12-0895. DOI: https://doi.org/10.1158/0008-5472.CAN-12-0895
HO, H.Y.; LI, M. Potential application of embryonic stem cells in Parkinson's disease: drug screening and cell therapy. Regenerative Medicine, v.1, n.2, p.175-82, 2006. doi: 10.2217/17460751.1.2.175. DOI: https://doi.org/10.2217/17460751.1.2.175
KIM, D.; KIM, S.B.; RYU, J.L.; HONG, H.; CHANG, J.H.; YOO, T.J.; JIN, X.; PARK, H.J.; HAN, C.; LEE, B.H.; CHOI, J.H.; YOO, H.W.; KIM, J.H.; WOO, D.H. Human Embryonic Stem Cell-Derived Wilson's Disease Model for Screening Drug Efficacy. Cells, v.9, n.4, p.872, 2020. doi: 10.3390/cells9040872. DOI: https://doi.org/10.3390/cells9040872
KANG, M.J.; CHO, Y.W.; KIM, T.H. Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. Biosensors (Basel), v.13, n.5, p.501, 2023. doi: 10.3390/bios13050501. DOI: https://doi.org/10.3390/bios13050501
KEUSGEN, M. Biosensors: new approaches in drug discovery. Naturwissenschaften, v.89, n.10, p.433-44, 2002. doi: 10.1007/s00114-002-0358-3. DOI: https://doi.org/10.1007/s00114-002-0358-3
LEE, E.; CHOI, H.K.; KWON, Y.; LEE, K.B. Real-Time, Non-Invasive Monitoring of Neuronal Differentiation Using Intein-Enabled Fluorescence Signal Translocation in Genetically Encoded Stem Cell-Based Biosensors. Advanced Functional Materials, v.34, n.29, p.2400394, 2024. doi: 10.1002/adfm.202400394. DOI: https://doi.org/10.1002/adfm.202400394
LI. K.; HUNTWORK, R.H.C.; HORN, G.Q.; ALAM, S.M.; TOMARAS, G.D.; DENNISON, S.M. TitrationAnalysis: a tool for high throughput binding kinetics data analysis for multiple label-free platforms. Gates Open Research, v.7, p.107, 2024. doi: 10.12688/gatesopenres.14743.2. DOI: https://doi.org/10.12688/gatesopenres.14743.2
LIU, Q.; CA, H.; XIAO, L.; LI, R.; YANG, M.; WANG, P. Embryonic Stem Cells Biosensor and Its Application in Drug Analysis and Toxin Detection. in IEEE Sensors Journal, vol. 7, no. 12, pp. 1625-1631, 2007a. doi: 10.1109/JSEN.2007.908439. DOI: https://doi.org/10.1109/JSEN.2007.908439
LIU, Q.; HUANG, H.; CAI, H.; XU, Y.; LI, Y.; LI, R.; WANG, P. Embryonic stem cells as a novel cell source of cell-based biosensors. Biosens Bioelectron, v.22, n.6, p.810-5, 2007b. doi: 10.1016/j.bios.2006.03.006. DOI: https://doi.org/10.1016/j.bios.2006.03.006
MOLÈ, M.A.; COORENS, T.H.H.; SHAHBAZI, M.N.; WEBERLING, A.; WEATHERBEE, B.A.T.; GANTNER, C.W.; SANCHO-SERRA, C.; RICHARDSON, L.; DRINKWATER, A.; SYED, N.; ENGLEY, S.; SNELL, P.; CHRISTIE, L.; ELDER, K.; CAMPBELL, A.; FISHEL, S.; BEHJATI, S.; VENTO-TORMO, R.; ZERNICKA-GOETZ, M. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat Communications, v.12, n.1, p.3679, 2021. doi: 10.1038/s41467-021-23758-w. DOI: https://doi.org/10.1038/s41467-021-23758-w
NOSRATI, H.; NOSRATI, M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics (Basel), v.8, n.5, p.442, 2023. doi: 10.3390/biomimetics8050442. DOI: https://doi.org/10.3390/biomimetics8050442
ONO, T.; OKUDA, S.; USHIBA, S.; KANAI, Y.; MATSUMOTO, K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. Materials (Basel), v.17, n.2, p.333, 2024. doi: 10.3390/ma17020333. DOI: https://doi.org/10.3390/ma17020333
PENG, Y.; XIE, M.; DUAN, X.; HU, L.; YU, J.; ZENG, S.; WANG, Y.; OUYANG, Q.; LU, G.; LIN, G.; SUN, Y. Generation of a luciferase-expressing human embryonic stem cell line: NERCe002-A-2. Stem Cell Research, v.28, p.172-176, 2018. doi: 10.1016/j.scr.2018.02.010. DOI: https://doi.org/10.1016/j.scr.2018.02.010
PEREIRA, A. S.; SHITSUKA, D. M.; PEREIRA, F. J.; SHITSUKA, R. Metodologia da pesquisa científica. Santa Maria: 1⸰ed. UFSM. 2018, 119p. Disponível em:< https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf> Acesso em: 21 de novembro de 2025
SABRIN, S.; KARMOKAR, D.K.; KARMAKAR, N.C.; HONG, S.H.; HABIBULLAH, H.; SZILI, E.J. Opportunities of Electronic and Optical Sensors in Autonomous Medical Plasma Technologies. ACS Sensors, v.8, n.3, p.974-993, 2023. doi: 10.1021/acssensors.2c02579. DOI: https://doi.org/10.1021/acssensors.2c02579
SANO, T.; ZHANG, H.; LOSAKUL, R.; SCHMIDT, H. All-in-One Optofluidic Chip for Molecular Biosensing Assays. Biosensors (Basel), v.12, n.7, p.501, 2022. doi: 10.3390/bios12070501. DOI: https://doi.org/10.3390/bios12070501
SHAHBAZI, M.N.; WANG, T.; TAO, X; WEATHERBEE, B.A.T.; SUN, L.; ZHAN, Y.; KELLER, L.; SMITH, G.D.; PELLICER, A.; SCOTT, R.T. JR.; SELI, E.; ZERNICKA-GOETZ. M. Developmental potential of aneuploid human embryos cultured beyond implantation. Nat Communications, v.11, n.1, p.3987, 2020. doi: 10.1038/s41467-020-17764-7. DOI: https://doi.org/10.1038/s41467-020-17764-7
SHI, Y.; KOPPARAPU, N.; OHLER, L.; DICKINSON, D.J. Efficient and rapid fluorescent protein knock-in with universal donors in mouse embryonic stem cells. Development, v.150, p.10, dev201367, 2023. doi: 10.1242/dev.201367. DOI: https://doi.org/10.1242/dev.201367
Singh, S.; Podder, P.S.; Russo, M.; Henry, C.; Cinti, S. Tailored point-of-care biosensors for liquid biopsy in the field of oncology. Lab Chip, v.23, n.1, p.44-61, 2022. doi: 10.1039/d2lc00666a. DOI: https://doi.org/10.1039/D2LC00666A
STANLEY, S.A.; GAGNER, J.E.; DAMANPOUR, S.; YOSHIDA, M.; DORDICK, J.S.; FRIEDMAN, J.M. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 2012 May 4;336(6081):604-8. doi: 10.1126/science.1216753. DOI: https://doi.org/10.1126/science.1216753
TIAN, Z.; YU, T.; LIU, J.; WANG, T.; HIGUCHI, A. Introduction to stem cells. Progress in Molecular Biology and Translational Science, v.199, p.3-32, 2023. doi: 10.1016/bs.pmbts.2023.02.012. DOI: https://doi.org/10.1016/bs.pmbts.2023.02.012
VARVAŘOVSKÁ, L.; KUDRNA, P.; SOPKO, B.; JAROŠÍKOVÁ, T. The Development of a Specific Nanofiber Bioreceptor for Detection of Escherichia coli and Staphylococcus aureus from Air. Biosensors (Basel), v.14, n.5, p.234, 2024. doi: 10.3390/bios14050234. DOI: https://doi.org/10.3390/bios14050234
WANG, S.; RIAHI, R.; LI, N.; ZHANG, D.D.; WONG, P.K. Single cell nanobiosensors for dynamic gene expression profiling in native tissue microenvironments. Advanced Functional Materials, v.27, n.39, p.6034-8, 2015. doi: 10.1002/adma.201502814. DOI: https://doi.org/10.1002/adma.201502814
WNOROWSKI, A.; YANG, H.; WU, J.C. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Advanced Drug Delivery Reviews, v.140, p.3-11, 2019. doi: 10.1016/j.addr.2018.06.001. DOI: https://doi.org/10.1016/j.addr.2018.06.001
ZHANG, W.; ZHAO, Y.; YANG, Z.; YAN, J.; WANG, H.; NIE, S.; JIA, Q.; DING, D.; TONG, C.; ZHANG, X.O.; GAO, Q.; SHUAI, L. Capture of Totipotency in Mouse Embryonic Stem Cells in the Absence of Pdzk1. Adv Sci (Weinh), v.12, n.6, p.e2408852, 2025. doi: 10.1002/advs.202408852. DOI: https://doi.org/10.1002/advs.202408852
ZHOU, Y.; BASU, S.; LAUE, E.; SESHIA, A.A. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens Bioelectronics, v.81, p.249-258, 2016. doi: 10.1016/j.bios.2016.02.069. DOI: https://doi.org/10.1016/j.bios.2016.02.069
ZIEGLER, C. Cell-based biosensors. Fresenius' Journal of Analytical Chemistry, v.366, n.6-7, p.552-9, 2000. doi: 10.1007/s002160051550. DOI: https://doi.org/10.1007/s002160051550
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Enrico Jardim Clemente Santos, Angela Mazzeo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista;
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista, desde que adpatado ao template do repositório em questão;
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
- Os autores são responsáveis por inserir corretamente seus dados, incluindo nome, palavras-chave, resumos e demais informações, definindo assim a forma como desejam ser citados. Dessa forma, o corpo editorial da revista não se responsabiliza por eventuais erros ou inconsistências nesses registros.
POLÍTICA DE PRIVACIDADE
Os nomes e endereços informados nesta revista serão usados exclusivamente para os serviços prestados por esta publicação, não sendo disponibilizados para outras finalidades ou a terceiros.
Obs: todo o conteúdo do trabalho é de responsabilidade do autor e orientador.
