MONITORAMENTO EM TEMPO REAL DE CÉLULAS-TRONCO DE ALTA PONTENCIALIDADE COMO ELEMENTO BIOLÓGICO INOVADOR EM BIOSSENSORES

Autores

DOI:

https://doi.org/10.61164/hx215f69

Palavras-chave:

Biossensores; Células-tronco embrionárias; Biossensores de células; Monitoramento.

Resumo

A convergência entre a biotecnologia de células-tronco e a tecnologia de biossensores representa um avanço significativo para a triagem de drogas e a medicina regenerativa. As Células-Tronco Embrionárias (CTEs), caracterizadas por sua pluripotência e capacidade de auto-renovação, oferecem uma fonte celular renovável e fisiologicamente relevante para a construção de Biossensores Baseados em Células (BBCs). Apesar dos desafios técnicos relacionados à manutenção da viabilidade celular e à padronização, a área avança em direção a sistemas integrados de Lab-on-a-Chip e biossensores de célula única, prometendo revolucionar a farmacologia de alto rendimento e a medicina personalizada. Neste artigo discutimos as plataformas de transdução compatíveis, como Microelectrode Arrays (MEAs) e Light-Addressable Potentiometric Sensors (LAPS), e o papel da nanoengenharia de superfície para otimizar a interface célula-transdutor. As principais aplicações incluem a triagem de cardiotoxicidade e neurotoxicidade de novos fármacos, o monitoramento em tempo real da diferenciação celular e a detecção de toxicidade ambiental. Este artigo explora os fundamentos dessa integração, destacando as CTEs (ou seus derivados diferenciados) como elementos de reconhecimento biológico que convertem respostas celulares a estímulos externos em sinais mensuráveis.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

AI, Z.; NIU. B.; YIN, Y.; XIANG, L.; SHI, G.; DUAN, K.; WANG, S.; HU, Y.; ZHANG, C.; ZHANG, C.; RONG, L.; KONG, R.; CHEN, T.; GUO, Y.; LIU, W.; LI, N.; ZHAO, S.; ZHU, X.; MAI, X.; LI, Y.; WU, Z.; ZHENG, Y.; FU, J.; JI, W.; LI, T. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Research, v. 33, n.9, p. 661-678, 2023. doi: 10.1038/s41422-023-00846-8. DOI: https://doi.org/10.1038/s41422-023-00846-8

AYDIN, T.; GURCAN, C.; TAHERI, H.; YILMAZER, A. Graphene Based Materials in Neural Tissue Regeneration. Adv Exp Med Biology, v.1107, p.129-142, 2018. doi: 10.1007/5584_2018_221. DOI: https://doi.org/10.1007/5584_2018_221

CHALKLEN, T.; JING, Q.; KAR-NARAYAN, S. Biosensors Based on Mechanical and Electrical Detection Techniques. Sensors (Basel), v.20, n.19, p.5605, 2020. doi: 10.3390/s20195605. DOI: https://doi.org/10.3390/s20195605

CHITHRANI, D. B. Optimization of Bio-Nano Interface Using Gold Nanostructures as a Model Nanoparticle System. Insciences Journal, v.1, n.3, 115-135, 2011. doi:10.5640/insc.0103115 DOI: https://doi.org/10.5640/insc.0103115

DIENEMANN, S.; WOHLENBERG, O. J.; GERSTENBERGER, J.G.; LAVRENTIEVA, A.; PEPELANOVA, I. 3D culture of neural progenitor cells in gelatin norbornene (GelNB) hydrogels: mechanical tuning and hypoxia characterization. Front Bioeng Biotechnology, v.13, p.1579580, 2025. doi: 10.3389/fbioe.2025.1579580. DOI: https://doi.org/10.3389/fbioe.2025.1579580

DORMEYER, W.; VAN, HOOF D.; BRAAM, S.R.; HECK, A.J.; MUMMERY, C.L.; KRIJGSVELD, J. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J Proteome Research, v.7, n.7, p.2936-51, 2008. doi: 10.1021/pr800056j. DOI: https://doi.org/10.1021/pr800056j

FAROUK, M.; EL-HAMEED, A.S.A.; ELDAMAK, A.R.; ELSHEAKH, D.N. Noninvasive blood glucose monitoring using a dual band microwave sensor with machine learning. Scientific Reports, v.15, n.1, p.16271, 2025. doi: 10.1038/s41598-025-94367-6. DOI: https://doi.org/10.1038/s41598-025-94367-6

FATHI, F.; RAHBARGHAZI, R.; RASHIDI, M.R. Label-free biosensors in the field of stem cell biology. Biosens Bioelectron. 2018 Mar 15;101:188-198. doi: 10.1016/j.bios.2017.10.028. DOI: https://doi.org/10.1016/j.bios.2017.10.028

GARCIA-JUNIOR, M.A.; ANDRADE, B.S.; LIMA, A.P.; SOARES, I.P.; NOTÁRIO, A.F.O.; BERNARDINO, S.S.; GUEVARA-VEJA, M.F.; HONÓRIO-SILVA, G.; MUNOZ, R.A.A.; JARDIM, A.C.G.; MARTINS, M.M.; GOULART, L.R.; CUNHA, T.M.; CARNEIRO, M.G.; SABINO-SILVA, R. Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. Biosensors (Basel), v.15, n.2, p.75, 2025. doi: 10.3390/bios15020075. DOI: https://doi.org/10.3390/bios15020075

GILL, B.J.; GIBBONS, D.L.; ROUDSARI, L.C.; SAIK, J.E.; RIZVI, Z.H.; ROYBAL, J.D.; KURIE, J.M.; WEST, J.L. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Research, v.72, n.22, p.6013-23, 2012. doi: 10.1158/0008-5472.CAN-12-0895. DOI: https://doi.org/10.1158/0008-5472.CAN-12-0895

HO, H.Y.; LI, M. Potential application of embryonic stem cells in Parkinson's disease: drug screening and cell therapy. Regenerative Medicine, v.1, n.2, p.175-82, 2006. doi: 10.2217/17460751.1.2.175. DOI: https://doi.org/10.2217/17460751.1.2.175

KIM, D.; KIM, S.B.; RYU, J.L.; HONG, H.; CHANG, J.H.; YOO, T.J.; JIN, X.; PARK, H.J.; HAN, C.; LEE, B.H.; CHOI, J.H.; YOO, H.W.; KIM, J.H.; WOO, D.H. Human Embryonic Stem Cell-Derived Wilson's Disease Model for Screening Drug Efficacy. Cells, v.9, n.4, p.872, 2020. doi: 10.3390/cells9040872. DOI: https://doi.org/10.3390/cells9040872

KANG, M.J.; CHO, Y.W.; KIM, T.H. Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. Biosensors (Basel), v.13, n.5, p.501, 2023. doi: 10.3390/bios13050501. DOI: https://doi.org/10.3390/bios13050501

KEUSGEN, M. Biosensors: new approaches in drug discovery. Naturwissenschaften, v.89, n.10, p.433-44, 2002. doi: 10.1007/s00114-002-0358-3. DOI: https://doi.org/10.1007/s00114-002-0358-3

LEE, E.; CHOI, H.K.; KWON, Y.; LEE, K.B. Real-Time, Non-Invasive Monitoring of Neuronal Differentiation Using Intein-Enabled Fluorescence Signal Translocation in Genetically Encoded Stem Cell-Based Biosensors. Advanced Functional Materials, v.34, n.29, p.2400394, 2024. doi: 10.1002/adfm.202400394. DOI: https://doi.org/10.1002/adfm.202400394

LI. K.; HUNTWORK, R.H.C.; HORN, G.Q.; ALAM, S.M.; TOMARAS, G.D.; DENNISON, S.M. TitrationAnalysis: a tool for high throughput binding kinetics data analysis for multiple label-free platforms. Gates Open Research, v.7, p.107, 2024. doi: 10.12688/gatesopenres.14743.2. DOI: https://doi.org/10.12688/gatesopenres.14743.2

LIU, Q.; CA, H.; XIAO, L.; LI, R.; YANG, M.; WANG, P. Embryonic Stem Cells Biosensor and Its Application in Drug Analysis and Toxin Detection. in IEEE Sensors Journal, vol. 7, no. 12, pp. 1625-1631, 2007a. doi: 10.1109/JSEN.2007.908439. DOI: https://doi.org/10.1109/JSEN.2007.908439

LIU, Q.; HUANG, H.; CAI, H.; XU, Y.; LI, Y.; LI, R.; WANG, P. Embryonic stem cells as a novel cell source of cell-based biosensors. Biosens Bioelectron, v.22, n.6, p.810-5, 2007b. doi: 10.1016/j.bios.2006.03.006. DOI: https://doi.org/10.1016/j.bios.2006.03.006

MOLÈ, M.A.; COORENS, T.H.H.; SHAHBAZI, M.N.; WEBERLING, A.; WEATHERBEE, B.A.T.; GANTNER, C.W.; SANCHO-SERRA, C.; RICHARDSON, L.; DRINKWATER, A.; SYED, N.; ENGLEY, S.; SNELL, P.; CHRISTIE, L.; ELDER, K.; CAMPBELL, A.; FISHEL, S.; BEHJATI, S.; VENTO-TORMO, R.; ZERNICKA-GOETZ, M. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat Communications, v.12, n.1, p.3679, 2021. doi: 10.1038/s41467-021-23758-w. DOI: https://doi.org/10.1038/s41467-021-23758-w

NOSRATI, H.; NOSRATI, M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics (Basel), v.8, n.5, p.442, 2023. doi: 10.3390/biomimetics8050442. DOI: https://doi.org/10.3390/biomimetics8050442

ONO, T.; OKUDA, S.; USHIBA, S.; KANAI, Y.; MATSUMOTO, K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. Materials (Basel), v.17, n.2, p.333, 2024. doi: 10.3390/ma17020333. DOI: https://doi.org/10.3390/ma17020333

PENG, Y.; XIE, M.; DUAN, X.; HU, L.; YU, J.; ZENG, S.; WANG, Y.; OUYANG, Q.; LU, G.; LIN, G.; SUN, Y. Generation of a luciferase-expressing human embryonic stem cell line: NERCe002-A-2. Stem Cell Research, v.28, p.172-176, 2018. doi: 10.1016/j.scr.2018.02.010. DOI: https://doi.org/10.1016/j.scr.2018.02.010

PEREIRA, A. S.; SHITSUKA, D. M.; PEREIRA, F. J.; SHITSUKA, R. Metodologia da pesquisa científica. Santa Maria: 1⸰ed. UFSM. 2018, 119p. Disponível em:< https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf> Acesso em: 21 de novembro de 2025

SABRIN, S.; KARMOKAR, D.K.; KARMAKAR, N.C.; HONG, S.H.; HABIBULLAH, H.; SZILI, E.J. Opportunities of Electronic and Optical Sensors in Autonomous Medical Plasma Technologies. ACS Sensors, v.8, n.3, p.974-993, 2023. doi: 10.1021/acssensors.2c02579. DOI: https://doi.org/10.1021/acssensors.2c02579

SANO, T.; ZHANG, H.; LOSAKUL, R.; SCHMIDT, H. All-in-One Optofluidic Chip for Molecular Biosensing Assays. Biosensors (Basel), v.12, n.7, p.501, 2022. doi: 10.3390/bios12070501. DOI: https://doi.org/10.3390/bios12070501

SHAHBAZI, M.N.; WANG, T.; TAO, X; WEATHERBEE, B.A.T.; SUN, L.; ZHAN, Y.; KELLER, L.; SMITH, G.D.; PELLICER, A.; SCOTT, R.T. JR.; SELI, E.; ZERNICKA-GOETZ. M. Developmental potential of aneuploid human embryos cultured beyond implantation. Nat Communications, v.11, n.1, p.3987, 2020. doi: 10.1038/s41467-020-17764-7. DOI: https://doi.org/10.1038/s41467-020-17764-7

SHI, Y.; KOPPARAPU, N.; OHLER, L.; DICKINSON, D.J. Efficient and rapid fluorescent protein knock-in with universal donors in mouse embryonic stem cells. Development, v.150, p.10, dev201367, 2023. doi: 10.1242/dev.201367. DOI: https://doi.org/10.1242/dev.201367

Singh, S.; Podder, P.S.; Russo, M.; Henry, C.; Cinti, S. Tailored point-of-care biosensors for liquid biopsy in the field of oncology. Lab Chip, v.23, n.1, p.44-61, 2022. doi: 10.1039/d2lc00666a. DOI: https://doi.org/10.1039/D2LC00666A

STANLEY, S.A.; GAGNER, J.E.; DAMANPOUR, S.; YOSHIDA, M.; DORDICK, J.S.; FRIEDMAN, J.M. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 2012 May 4;336(6081):604-8. doi: 10.1126/science.1216753. DOI: https://doi.org/10.1126/science.1216753

TIAN, Z.; YU, T.; LIU, J.; WANG, T.; HIGUCHI, A. Introduction to stem cells. Progress in Molecular Biology and Translational Science, v.199, p.3-32, 2023. doi: 10.1016/bs.pmbts.2023.02.012. DOI: https://doi.org/10.1016/bs.pmbts.2023.02.012

VARVAŘOVSKÁ, L.; KUDRNA, P.; SOPKO, B.; JAROŠÍKOVÁ, T. The Development of a Specific Nanofiber Bioreceptor for Detection of Escherichia coli and Staphylococcus aureus from Air. Biosensors (Basel), v.14, n.5, p.234, 2024. doi: 10.3390/bios14050234. DOI: https://doi.org/10.3390/bios14050234

WANG, S.; RIAHI, R.; LI, N.; ZHANG, D.D.; WONG, P.K. Single cell nanobiosensors for dynamic gene expression profiling in native tissue microenvironments. Advanced Functional Materials, v.27, n.39, p.6034-8, 2015. doi: 10.1002/adma.201502814. DOI: https://doi.org/10.1002/adma.201502814

WNOROWSKI, A.; YANG, H.; WU, J.C. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Advanced Drug Delivery Reviews, v.140, p.3-11, 2019. doi: 10.1016/j.addr.2018.06.001. DOI: https://doi.org/10.1016/j.addr.2018.06.001

ZHANG, W.; ZHAO, Y.; YANG, Z.; YAN, J.; WANG, H.; NIE, S.; JIA, Q.; DING, D.; TONG, C.; ZHANG, X.O.; GAO, Q.; SHUAI, L. Capture of Totipotency in Mouse Embryonic Stem Cells in the Absence of Pdzk1. Adv Sci (Weinh), v.12, n.6, p.e2408852, 2025. doi: 10.1002/advs.202408852. DOI: https://doi.org/10.1002/advs.202408852

ZHOU, Y.; BASU, S.; LAUE, E.; SESHIA, A.A. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens Bioelectronics, v.81, p.249-258, 2016. doi: 10.1016/j.bios.2016.02.069. DOI: https://doi.org/10.1016/j.bios.2016.02.069

ZIEGLER, C. Cell-based biosensors. Fresenius' Journal of Analytical Chemistry, v.366, n.6-7, p.552-9, 2000. doi: 10.1007/s002160051550. DOI: https://doi.org/10.1007/s002160051550

Downloads

Publicado

2025-11-28

Como Citar

MONITORAMENTO EM TEMPO REAL DE CÉLULAS-TRONCO DE ALTA PONTENCIALIDADE COMO ELEMENTO BIOLÓGICO INOVADOR EM BIOSSENSORES. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 20(03), 1-20. https://doi.org/10.61164/hx215f69