TAILINGS LIQUEFACTION AND DAM STABILITY: ADVANCES IN DIAGNOSIS, MONITORING, STANDARDS AND MITIGATION – A CRITICAL REVIEW
DOI:
https://doi.org/10.61164/erfqjg05Palabras clave:
Tailings Liquefaction; Static and Cyclic Instability; State Parameter (Ψ); CPTu/SCPTu Diagnostics; TSF Monitoring and Governance; Numerical Modelling and RunouResumen
This review synthesizes advances from 2020 to 2025 in the understanding, diagnosis, modelling and governance of tailings liquefaction, drawing on a PRISMA-based assessment of scientific literature, case histories, technical guidelines and regulatory frameworks. Recent findings clarify the distinct roles of critical state and steady-state concepts in interpreting the behaviour of sandy, silty and structured tailings, while new evidence highlights the importance of depositional fabric, partial drainage and anisotropy in governing undrained softening and liquefaction susceptibility. Progress in CPTu/SCPTu interpretation, shear-wave velocity–based correlations and multi-parameter diagnostic frameworks has strengthened field evaluation but remains limited by heterogeneous stratigraphy and incomplete calibration across tailings typologies. Multi-source monitoring approaches—integrating InSAR, piezometry, geodetic instrumentation and operational data—have improved the detection of precursors and the interpretation of hydraulic and mechanical triggers. Hybrid numerical workflows combining FEM and MPM have advanced the modelling of triggering, strain softening and runout, although significant uncertainties persist regarding residual strength and softening laws. Regulatory developments, including GISTM (2020), ICOLD Bulletin 194 (2022) and Brazil’s ANM Resolution 95/2022, have shifted industry expectations toward life-cycle, evidence-based risk management. Collectively, the literature reveals substantial conceptual and technological progress but also persistent gaps in data integration, partially drained behaviour, decharacterization criteria and portfolio-scale governance, underscoring the need for more robust, adaptive and mechanistic approaches to TSF stability.
Descargas
Referencias
Agência Nacional de Mineração. (2022). Resolução ANM nº 95, de 7 de fevereiro de 2022. https://www.in.gov.br/en/web/dou/-/resolucao-n-95-de-7-de-fevereiro-de-2022-379796728
Almeida, M. S. S., Bertolino, G., Guimarães, M., & Figueiredo, M. (2025). Toward sustainable tailings disposal: A geotechnical and governance perspective. Soils and Rocks, 48(1). https://www.scielo.br/j/soiroc/a/GQ6Jj98Ncxt69skGYRKCbKc/ DOI: https://doi.org/10.28927/SR.2025.011624
Almeida, M. S. S., et al. (2022). Geotechnics of mine tailings: A 2022 state-of-the-art. In 7th Brazilian Symposium on Mine Tailings.
Alshawmar, F., Everett, M., & Fahey, M. (2022). Geotechnical behaviour of layered paste tailings in shaking table tests. Georisk, 16(1–2), 96–114. https://doi.org/10.1080/17480930.2021.2004367 DOI: https://doi.org/10.1080/17480930.2021.2004367
Anjos, L., et al. (2022). An overview of soil and plant assessment for predicting site quality and recovery strategies after one of the largest tailings dam failures worldwide. Ecological Indicators, 142, 109219. https://repositorio.usp.br/directbitstream/5244dce0-c4f8-4da0-8ac7-6c59180451a6/3218993
ANCOLD. (2019/2022). Guidelines on tailings dams – Planning, design, construction, operation and closure. https://ancold.org.au/product/guidelines-on-tailings-dams/
Arnold, C., Macedo, J., & Vergaray, L. (2023). Static and cyclic liquefaction of copper mine tailings. Journal of Geotechnical and Geoenvironmental Engineering, 149(9). https://doi.org/10.1061/JGGEFK.GTENG-10661
Ayala, J., Fourie, A., & Reid, D. (2022). Improved cone penetration test predictions of the state parameter of loose mine tailings. Canadian Geotechnical Journal, 59(11), 1969–1980. https://doi.org/10.1139/cgj-2021-0460 DOI: https://doi.org/10.1139/cgj-2021-0460
Been, K., Jefferies, M. G., Crooks, J. H. A., & MacAskill, K. (2020). Understanding mine tailings liquefaction: Updating the steady state framework. Proceedings of the GeoVirtual 2020 Conference. Canadian Geotechnical Society.
Bertolino, G., Guimarães, M., & Almeida, M. (2024). Numerical sensitivity analysis for stress–strain simulation of mine tailings using NorSand. Soils and Rocks, 47(3). https://www.soilsandrocks.com/sr-2024-011322
Bokkisa, S. V., et al. (2024). Challenges in NorSand to model CSD stress paths and liquefaction in tailings. Canadian Geotechnical Journal. https://doi.org/10.1139/cgj-2024-0546 DOI: https://doi.org/10.1139/cgj-2024-0546
Brasil. (2020). Lei nº 14.066, de 30 de setembro de 2020. https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/lei/L14066.htm
Brumadinho-related references: Ver Du et al. (2020); Fonseca et al. (2022); Mendes et al. (2022).
Chen, G., Wu, Q., Zhou, Z., Ma, W., Chen, W., Khoshnevisan, S., & Yang, J. (2020). Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation. Géotechnique, 70(4), 317–331. https://doi.org/10.1680/jgeot.18.P.180 DOI: https://doi.org/10.1680/jgeot.18.P.180
CREA-MG. (2023). Barragens de mineração: Guia de referência para boas práticas de projeto, operação e descaracterização. https://www.crea-mg.org.br/barragens/
Dares Technology. (2024). How to prevent failures in tailings storage facilities. https://dares.tech/tailings-storage-facilities-tsfs-are-critical-for-mining-operations/
Das, S., Priyadarshana, A., & Grebby, S. (2024). Monitoring the risk of a tailings dam collapse through spectral analysis of satellite InSAR time-series data. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-024-02713-3 DOI: https://doi.org/10.1007/s00477-024-02713-3
Du, Z., et al. (2020). Risk assessment for tailings dams in Brumadinho using InSAR time series. Science of the Total Environment, 717, 137125. https://doi.org/10.1016/j.scitotenv.2020.137125 DOI: https://doi.org/10.1016/j.scitotenv.2020.137125
E-Tech International. (2024). Causes of tailings dam failures. https://etechinternational.org/wp-content/uploads/E-Tech.2024_CausesTailingsDamFailures_ENG.pdf
Etezad, M., Naftchali, F. M., & Behzadipour, H. (2025). CPT penetration rate effect on interpretation of the state parameter and undrained shear strength of tailings. In Tailings and Mine Waste 2025. https://www.wsp.com/-/media/events/global/tailings-and-mine-waste/etezad-et-al_cpt-pene-rate-effect-interpretation-state-parameter-and-uss-tails_tmw2025.pdf
Fonseca, E., et al. (2022). Brumadinho tailings dam failure: Geotechnical characterization and flow slide back-analysis. Soils and Rocks, 45(3). https://www.soilsandrocks.com/brumadinho-tailings-dam-failure
Fonni, F., Bonelli, S., & Vincens, E. (2025). Behaviour of a sandy silt gold tailings under drained simple shear. Engineering Geology, 329, 108171. https://doi.org/10.1016/j.enggeo.2024.108171
Fu, S., Liu, S., & Arnold, B. (2025). Historic tailing dam failures through application of InSAR technologies. In ARMA 2025. https://doi.org/10.56952/ARMA-2025-0570 DOI: https://doi.org/10.56952/ARMA-2025-0570
Gildeh, S. H., et al. (2020). Tailings dam breach analysis and outflow modelling: A state-of-practice review. Journal of Hydrology, 590, 125235. https://doi.org/10.1016/j.jhydrol.2020.125235 DOI: https://doi.org/10.1016/j.jhydrol.2020.125235
Global Industry Standard on Tailings Management (GISTM). (2020). ICMM–UNEP–PRI. https://globaltailingsreview.org/wp-content/uploads/2020/08/global-industry-standard_EN.pdf
Global Tailings Portal (UNEP/GRID/PRI). (2020– ). Global tailings database. https://tailing.grida.no/
Global Tailings Review. (2020). Main report and recommendations. https://globaltailingsreview.org/
Grebby, S., et al. (2021). Advanced analysis of satellite data reveals ground deformation precursors to the Brumadinho dam collapse. Communications Earth & Environment, 2, 79. https://doi.org/10.1038/s43247-021-00179-2 DOI: https://doi.org/10.1038/s43247-020-00079-2
ICOLD. (2022). Bulletin 194 – Tailings dam safety governance. https://tailingsknowledge.com/icold-bulletin-194/
International Council on Mining and Metals, United Nations Environment Programme, & Principles for Responsible Investment. (2020). Global Industry Standard on Tailings Management. Global Tailings Review. https://globaltailingsreview.org
Islam, K. N., Murakami, S., et al. (2021). Global-scale impact analysis of mine tailings dam failures 1915–2020. Global Environmental Change, 70, 102361. https://doi.org/10.1016/j.gloenvcha.2021.102361 DOI: https://doi.org/10.1016/j.gloenvcha.2021.102361
Kemp, D., Owen, J. R., & Lèbre, É. (2021). Tailings facility failures in the global mining industry: Will a ‘transparency turn’drive change?. Business Strategy and the Environment, 30(1), 122-134. DOI: https://doi.org/10.1002/bse.2613
Lin, S.-Q., Wang, G.-J., Liu, W.-L., Zhao, B., Shen, Y.-M., Wang, M.-L., & Li, X.-S. (2022). Regional distribution and causes of global mine tailings dam failures. Metals, 12(6), 905. https://doi.org/10.3390/met12060905 DOI: https://doi.org/10.3390/met12060905
Lin, S. Q., et al. (2024). Global mine tailings dam risk: Trends in occurrence and causes. Resources Policy, 87, 104235. https://doi.org/10.1016/j.resourpol.2024.104235
Liu, H., et al. (2024). Considerations for using critical state soil mechanics in liquefaction assessment of tailings. Engineering Geology, 328, 107224. https://doi.org/10.1016/j.enggeo.2024.107224
Liu, W., et al. (2024). Evaluation of state parameter interpretation methods using CPT data. Underground Space, 9(1), 111–125. https://doi.org/10.1016/j.undsp.2023.05.004 DOI: https://doi.org/10.1016/j.undsp.2023.05.004
Liu, W., et al. (2025). Numerical analysis of liquefaction in tailings dams using PM4Sand and PM4Silt. https://www.researchgate.net/publication/381591905
Lyu, Z., et al. (2019). A comprehensive review on reasons for tailings dam failures based on case history. Advances in Civil Engineering, 2019, 4159306. https://doi.org/10.1155/2019/4159306 DOI: https://doi.org/10.1155/2019/4159306
Ma, L., Fu, X., Xu, Y., Chen, Q., & Wang, Z. (2025). Spatial evolution analysis of tailings flow from dam failure using 3-D simulation. Applied Sciences, 15(4), 1757. https://doi.org/10.3390/app15041757 DOI: https://doi.org/10.3390/app15041757
Macedo, J., & Verga, A. (2022). Properties of mine tailings for static liquefaction assessment. Canadian Geotechnical Journal, 59(5), 667–687. https://doi.org/10.1139/cgj-2020-0600 DOI: https://doi.org/10.1139/cgj-2020-0600
Marais, L., et al. (2024). The catastrophic failure of the Jagersfontein tailings dam. International Journal of Disaster Risk Reduction, 100, 104102. https://doi.org/10.1016/j.ijdrr.2024.104102 DOI: https://doi.org/10.1016/j.ijdrr.2024.104585
Mendes, J., et al. (2022). A PLS-path model of causality in the Brumadinho failure. Environmental Pollution, 305, 119299. https://doi.org/10.1016/j.envpol.2022.119299 DOI: https://doi.org/10.1016/j.envpol.2022.119299
Ming, L.-Q., Zhang, Y.-B., Zhao, Y.-M., Li, Y., & Liu, S. (2022). Numerical simulation on the evolution of tailings pond breach: Application to rapid risk assessment. Frontiers in Earth Science, 10, 901904. https://doi.org/10.3389/feart.2022.901904 DOI: https://doi.org/10.3389/feart.2022.901904
Monforte, L., Arroyo, M., & Gens, A. (2023). A relation between CPTu results and the state parameter for liquefiable soils. Canadian Geotechnical Journal. https://doi.org/10.1139/cgj-2022-0377 DOI: https://doi.org/10.1139/cgj-2022-0377
Mozaffari, M., et al. (2023). Material-specific interpretation of the state parameter from a validated CPT model. Canadian Geotechnical Journal, 60(6), 830–846. https://doi.org/10.1139/cgj-2022-0490 DOI: https://doi.org/10.1139/cgj-2022-0490
Muñoz-Gaete, M., et al. (2025). Comparative analysis of NorSand and HS Small for evaluating static liquefaction. Applied Sciences, 15(15), 8726. https://doi.org/10.3390/app15158726 DOI: https://doi.org/10.3390/app15158726
Naftchali, F. M., Manmatharajan, M. V., & Behzadipour, H. (2024). State parameter estimation methods for liquefaction assessment. In Tailings and Mine Waste 2024. https://www.researchgate.net/publication/387030232
Ng, C. W. W., Crous, P., & Jacobsz, S. W. (2023). Centrifuge and numerical modelling of liquefied and non-liquefied failures of TSFs. Journal of Geotechnical and Geoenvironmental Engineering, 149(9). DOI: https://doi.org/10.1061/JGGEFK.GTENG-10800
Pacheco, T. F., et al. (2025). Tailings dam failures in Brazil: Ecological and social impacts. Journal of Environmental Management, 370, 121512. https://doi.org/10.1016/j.jenvman.2025.121512
Pereira, A. C. (2025a). Static liquefaction in tailings and fine ores (2020–2025): Mechanisms, assessment methods, modeling, and management guidelines. Revista FT, 29(152), https://doi.org/10.69849/revistaft/ni10202511292312 DOI: https://doi.org/10.69849/revistaft/ni10202511292312
Pereira, A. C. (2025b). Mining waste valorization for construction materials: A systematic review of technologies, environmental performance, and circular economy perspectives (2010–2025). IKR Journal of Engineering and Technology (IKRJET), 1(3). https://orcid.org/0000-0001-8115-4279
Pereira, A. C., Fonseca, R. B. C., & Santos, J. R. (2025). Liquefaction of iron ore fines in maritime transport: Advances, challenges and safety perspectives. Studies in Engineering and Exact Sciences, 6(2), 1–30. https://doi.org/10.54021/seesv6n2-013 DOI: https://doi.org/10.54021/seesv6n2-013
Pestana, J. M., & Whittle, A. J. (1999). Formulation of a unified constitutive model for clays and sands. International Journal for Numerical and Analytical Methods in Geomechanics, 23(12), 1215-1243. DOI: https://doi.org/10.1002/(SICI)1096-9853(199910)23:12<1215::AID-NAG29>3.0.CO;2-F
Piciullo, L., Storrøsten, E. B., Liu, Z., Nadim, F., & Lacasse, S. (2022). A new look at the statistics of tailings dam failures. Engineering Geology, 303, 106657. DOI: https://doi.org/10.1016/j.enggeo.2022.106657
Qi, L., Liu, W., Zhao, H., Talesnick, M., & Ghafghazi, M. (2024, May). CPT calibration chamber testing on tailings. In IOP Conference Series: Earth and Environmental Science (Vol. 1330, No. 1, p. 012001). IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/1330/1/012001
Rana, N. M., Ghahramani, N., Evans, S. G., & McDougall, S. (2021). Catastrophic mass flows resulting from tailings impoundment failures. Engineering Geology, 292, 106262. https://doi.org/10.1016/j.enggeo.2021.106262 DOI: https://doi.org/10.1016/j.enggeo.2021.106262
Rana, N. M., et al. (2024). Application of Sentinel-1 InSAR to monitor TSFs and predict instability. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-024-03680-3 DOI: https://doi.org/10.1007/s10064-024-03680-3
Rawat, P., & Sasanakul, I. (2024). Mechanical response of mine tailings under constant shear drained loading. Journal of Geotechnical and Geoenvironmental Engineering.
Reid, D., Fourie, A., Fanni, R., Vulpe, C., & Halliday, A. (2021). Some considerations when using deformation monitoring to manage the static liquefaction risks of TSFs. In Proceedings of the 17th ANZ Geomechanics Conference (ANCOLD 2021). https://research-repository.uwa.edu.au/files/530843186/Reid_et_al_2021_-_Some_considerations_when_using_deformation_monitoring_to_manage_the_static_liquefaction_risks_of_TSFs.pdf
Reid, D. (2022). Discussion of “Evaluation of flow liquefaction and liquefied strength using the cone penetration test: An update.” Canadian Geotechnical Journal, 59, e1–e3. https://doi.org/10.1139/cgj-2021-0698 DOI: https://doi.org/10.1139/cgj-2021-0698
Resolução ANM nº 95, de 7 de fevereiro de 2022. (2022). Estabelece critérios para o Sistema Integrado de Gestão de Barragens de Mineração (SIGBM) e para a classificação de barragens de mineração. Agência Nacional de Mineração. https://www.gov.br/anm
Riveros, C., & Sadrekarimi, A. (2021). Static liquefaction behaviour of gold mine tailings. Canadian Geotechnical Journal, 58(9), 1350–1364. https://doi.org/10.1139/cgj-2020-0209 DOI: https://doi.org/10.1139/cgj-2020-0209
Riveros, C. (2019). Studies on the liquefaction behaviour of tailings and natural soils (PhD thesis). Western University. https://ir.lib.uwo.ca/etd/6127/
Robertson, P. K. (2021). Evaluation of flow liquefaction and liquefied strength using the cone penetration test: An update. Canadian Geotechnical Journal, 58(5), 620–636. https://doi.org/10.1139/cgj-2020-0657 DOI: https://doi.org/10.1139/cgj-2020-0657
Rodríguez-Pacheco, R., Caparrós, A. V., Alcolea, A., Segarra, P., & Sánchez-Espigares, J. A. (2022). Static liquefaction causes the flow failure of a tailings dam: El Descargador (1963). Minerals, 12(12), 1488. https://doi.org/10.3390/min12121488 DOI: https://doi.org/10.3390/min12121488
Sarkar, G., & Sadrekarimi, A. (2022). Undrained shearing behaviour of oil sands tailings. Soil Dynamics and Earthquake Engineering, 161, 107410. https://doi.org/10.1016/j.soildyn.2022.107410 DOI: https://doi.org/10.1016/j.soildyn.2022.107410
Salam, S. (2020). Cyclic behavior of fine coal refuse and seismic stability of coal tailings dams (Publication No. 28778358) [Doctoral dissertation, The Pennsylvania State University]. ProQuest Dissertations & Theses Global.
Santamarina, J. C., Torres-Cruz, L. A., & Bachus, R. C. (2019). Why coal ash and tailings dam failures occur. Science, 364(6440), 526–528. https://doi.org/10.1126/science.aax1927 DOI: https://doi.org/10.1126/science.aax1927
Santos Junior, M. P., Figueiredo, M., & Massad, F. (2022). Evaluation of liquefaction susceptibility of sandy-silt tailings using CPTu. https://www.pimentadeavila.com.br/wp-content/uploads/2023/05/Evaluation-of-flow-liquefaction-susceptibility-of-a-sandy-silt-tailings-using-the-CPTu.pdf
Schnaid, F. (2022). The Ninth James K. Mitchell Lecture: On the geomechanics and geocharacterization of tailings. In Proceedings of ISC-2020 – 7th International Conference on Geotechnical and Geophysical Site Characterization (Budapeste, 2022). https://doi.org/10.53243/ISC2020-501
Sebothoma, L., et al. (2020). InSAR for early prediction of TSF failures. ISSMGE Proceedings. https://www.issmge.org/uploads/publications/51/135/21._L_Sebothoma.pdf
Simms, P., Wilson, G. W., McDougall, S. R., Jefferies, M., & Fourie, A. B. (2025). Post-liquefaction residual strength of mine tailings: New insights from ring shear testing. Canadian Geotechnical Journal, 62(1), 120–135. https://doi.org/10.1139/cgj-2024-0567 DOI: https://doi.org/10.1139/cgj-2024-0083
Soares, M. M., Alves, M. P., & Massad, F. (2023). Static liquefaction assessment combining Vs, peak strength and grading. Applied Sciences, 13(15), 8580. https://doi.org/10.3390/app13158580 DOI: https://doi.org/10.3390/app13158580
Sordo, F., Conte, E., Cuomo, S., Krishnan, K., & Manzari, M. T.. (2024). Modelling liquefaction-induced runout of a TSF with hybrid FEM–MPM. arXiv. https://arxiv.org/abs/2402.02544
Sordo, B., Rathje, E., & Kumar, K. (2025). Hybrid Finite-Element and Material Point Method for Modeling Liquefaction-Induced Tailings Dam Failures. Journal of Geotechnical and Geoenvironmental Engineering, 151(8), 04025086. DOI: https://doi.org/10.1061/JGGEFK.GTENG-13377
Sottile, M. G. S., Cueto, I. A., & Sfriso, A. O. (2020). A simplified procedure to numerically evaluate triggering of static liquefaction in upstream-raised tailings storage facilities. arXiv. https://arxiv.org/abs/2010.11705 DOI: https://doi.org/10.4322/cobramseg.2022.0712
Sreekumar, U., et al. (2024). Tailings dam breach outflow modelling: A review. Mine Water and the Environment. https://doi.org/10.1007/s10230-024-01015-y DOI: https://doi.org/10.1007/s10230-024-01015-y
SRK Consulting. (2024). A method to estimate the state parameter from CPTu soundings. https://cdn-web-content.srk.com/upload/user/image/WEB_A%2BMethod%2B...CPTu%2BSoundings.pdf
UNECE. (2020). Safety guidelines and good practices for tailings management facilities. United Nations Economic Commission for Europe. https://unece.org
UNECE. (2022). Tailings management facilities – Safety guidelines and good practices. https://unece.org/sites/default/files/2022-03/UNECE_TMF_Guidelines_2022.pdf
UNECE. (2025). Overview of satellite monitoring for improving tailings safety. https://unece.org/sites/default/files/2025-04/4a_InSAR%20paper_stalite%20monitoring_final.pdf
Vale S.A. (2023). Plano de descaracterização de barragens a montante: Relatório de progresso. https://vale.com/br/pt/descaracterizacao-de-barragens
Verdugo, R. (2024). Static liquefaction in the context of steady state/critical state and its application in the stability of tailings dams. Soil Dynamics and Earthquake Engineering, 176, 108270. https://doi.org/10.1016/j.soildyn.2023.108270 DOI: https://doi.org/10.1016/j.soildyn.2023.108270
Vergaray, L., Macedo, J., & Arnold, C. (2023). Static and cyclic liquefaction of copper mine tailings (ver Arnold et al., 2023). DOI: https://doi.org/10.1061/JGGEFK.GTENG-10661
World Mine Tailings Failures. (2020–2025). Global failures database. https://worldminetailingsfailures.org/
Xie, W., Duan, C., & Chen, Z. (2023). SBAS-InSAR monitoring of tailings dams using Sentinel-1. Sensors, 23(24), 9707. https://doi.org/10.3390/s23249707 DOI: https://doi.org/10.3390/s23249707
Yang, Z., Huang, X., Li, J., Li, Z., He, Q., & Hu, J. (2025). A new InSAR-based framework for assessing tailings dam failure risks: With the robust separation of consolidation settlements. International Journal of Applied Earth Observation and Geoinformation, 140, 104602. https://doi.org/10.1016/j.jag.2025.104602 DOI: https://doi.org/10.1016/j.jag.2025.104602
Zhang, Y., Wang, L., Li, X., Zhou, J., & Chen, Z. (2023). Role of fines content in static liquefaction behavior of tailings: Experimental evidence. Canadian Geotechnical Journal, 60(6), 1120–1132. https://doi.org/10.1139/cgj-2022-0348 DOI: https://doi.org/10.1139/cgj-2022-0348
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Antonio Clareti Pereira

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista;
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista, desde que adpatado ao template do repositório em questão;
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
- Os autores são responsáveis por inserir corretamente seus dados, incluindo nome, palavras-chave, resumos e demais informações, definindo assim a forma como desejam ser citados. Dessa forma, o corpo editorial da revista não se responsabiliza por eventuais erros ou inconsistências nesses registros.
POLÍTICA DE PRIVACIDADE
Os nomes e endereços informados nesta revista serão usados exclusivamente para os serviços prestados por esta publicação, não sendo disponibilizados para outras finalidades ou a terceiros.
Obs: todo o conteúdo do trabalho é de responsabilidade do autor e orientador.
