ENTRE DADOS E SIGNIFICADOS: CONTRIBUIÇÕES EPISTEMOLÓGICAS E METODOLÓGICAS DA INTELIGÊNCIA ARTIFICIAL PARA PESQUISAS QUALITATIVAS E QUANTITATIVAS

Autores/as

  • MARIA ZULI MORAIS FARIAS DE SOUZA UNILEAO
  • Marly Otília dos Santos UNILEÃO, Brasil
  • Kalyne Madeira Furtado UNILEÃO, Brasil
  • Ana Cláudia Gomes Arraes UNILEÃO, Brasil
  • Francisco Renato Silva Ferreira UNILEÃO, Brasil
  • Manoel Pereira da Rocha Neto UNILEÃO,Brasil
  • Francisco Francinete Leite Júnior UNILEÃO,Brasil
  • José Eduardo de Carvalho Lima UNILEÃO,Brasil

DOI:

https://doi.org/10.61164/c7tkek73

Palabras clave:

Inteligência Artificial; Pesquisa Qualitativa; Pesquisa Quantitativa; Metodologia Científica; Ética na Pesquisa.

Resumen

A incorporação da Inteligência Artificial (IA) no campo da pesquisa científica tem suscitado debates acerca de suas contribuições metodológicas, epistemológicas e éticas, especialmente no âmbito das pesquisas qualitativas e quantitativas. Diante desse contexto, o presente artigo problematiza de que maneira a IA pode contribuir para o aprimoramento dos processos metodológicos na pesquisa científica sem comprometer a autonomia intelectual, a interpretação crítica e os princípios éticos do pesquisador. O objetivo consiste em analisar criticamente as potencialidades, limitações e implicações éticas do uso da IA na produção do conhecimento científico. Metodologicamente, trata-se de uma revisão bibliográfica de natureza integrativa, com abordagem qualitativa, exploratória e descritiva, fundamentada em autores clássicos e contemporâneos que discutem tecnologia, metodologia científica e inteligência artificial. Os resultados indicam que a IA amplia significativamente a capacidade de coleta, organização, tratamento e análise de dados, promovendo maior precisão analítica, otimização do tempo e diversificação das estratégias interpretativas. Ferramentas como ChatGPT, IRAMUTEQ e Jamovi configuram-se como mediadoras cognitivas, capazes de apoiar o pesquisador tanto em análises qualitativas quanto quantitativas, sem substituir o julgamento humano. Como contribuição original, o estudo propõe a compreensão da IA como um dispositivo metodológico complementar, cujo uso exige uma postura crítica, reflexiva e eticamente orientada. Conclui-se que a integração equilibrada entre inteligência humana e artificial inaugura um novo paradigma na pesquisa científica contemporânea, pautado pela inovação, interdisciplinaridade e rigor metodológico.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

BARDIN, Laurence. Análise de conteúdo. São Paulo: Edições 70, 2016.

BENDER, Emily M. et al. On the dangers of stochastic parrots: Can language models be too big? In: Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. New York: ACM, 2021. p. 610–623. DOI: https://doi.org/10.1145/3442188.3445922

BOTELHO, Louise de Lira Roedel; CUNHA, Cristiano Castro de Almeida; MACEDO, Marcelo. O método da revisão integrativa nos estudos organizacionais. Gestão & Sociedade, Belo Horizonte, v. 5, n. 11, p. 121–136, 2011. DOI: https://doi.org/10.21171/ges.v5i11.1220

CAMARGO, Brígido Vizeu; JUSTO, Ana Maria. IRAMUTEQ: um software gratuito para análise de dados textuais. Temas em Psicologia, Ribeirão Preto, v. 21, n. 2, p. 513–518, 2013. DOI: https://doi.org/10.9788/TP2013.2-16

CHALMERS, Alan. O que é ciência afinal? São Paulo: Brasiliense, 1993.

CRAWFORD, Kate. Atlas of AI: power, politics, and the planetary costs of artificial intelligence. New Haven: Yale University Press, 2021. DOI: https://doi.org/10.12987/9780300252392

CRESWELL, John W. Projeto de pesquisa: métodos qualitativo, quantitativo e misto. Porto Alegre: Artmed, 2010.

DENZIN, Norman K.; LINCOLN, Yvonna S. The Sage handbook of qualitative research. 5. ed. Thousand Oaks: Sage, 2018.

DEDE, Chris. Comparing frameworks for 21st century skills. In: BELLANCA, James; BRANDT, Ron (org.). 21st century skills: rethinking how students learn. Bloomington: Solution Tree Press, 2018. p. 51–76.

DINIZ, Debora et al. Inteligência artificial e ética da pesquisa científica: desafios contemporâneos. Revista Bioética, Brasília, v. 32, n. 1, p. 1–12, 2024.

FIELD, Andy. Discovering statistics using IBM SPSS statistics. 4. ed. London: Sage, 2013.

FIELD, Andy. Discovering statistics using IBM SPSS statistics. 5. ed. London: Sage, 2018.

FLICK, Uwe. Introdução à pesquisa qualitativa. Porto Alegre: Artmed, 2009.

GIL, Antonio Carlos. Métodos e técnicas de pesquisa social. 6. ed. São Paulo: Atlas, 2010.

GIL, Antonio Carlos. Métodos e técnicas de pesquisa social. 7. ed. São Paulo: Atlas, 2019.

JAMES, Gareth et al. An introduction to statistical learning. New York: Springer, 2013. DOI: https://doi.org/10.1007/978-1-4614-7138-7

KOSMYNA, Nataliya et al. Evaluating cognitive and ethical risks of large language models. Nature Human Behaviour, London, v. 9, p. 1–10, 2025.

KUHN, Thomas S. A estrutura das revoluções científicas. São Paulo: Perspectiva, 1998.

LATOUR, Bruno. Ciência em ação: como seguir cientistas e engenheiros sociedade afora. São Paulo: Editora UNESP, 2000.

MAYER, Richard E. Multimedia learning. 2. ed. Cambridge: Cambridge University Press, 2009.

MISHRA, Punya; KOEHLER, Matthew J. Technological pedagogical content knowledge: a framework for teacher knowledge. Teachers College Record, New York, v. 108, n. 6, p. 1017–1054, 2006. DOI: https://doi.org/10.1177/016146810610800610

MONTEIRO, Silvana Drumond; ASSIS, Juliana. Inteligência artificial, epistemologia e ética na pesquisa científica. Revista Educação & Sociedade, Campinas, v. 46, p. 1–18, 2025.

MORIN, Edgar. Introdução ao pensamento complexo. Porto Alegre: Sulina, 2005.

MONTGOMERY, Douglas C.; RUNGER, George C. Applied statistics and probability for engineers. 6. ed. Hoboken: Wiley, 2014.

O’NEIL, Cathy. Weapons of math destruction: how big data increases inequality and threatens democracy. New York: Crown, 2016.

QUALTRICS. Research trends: artificial intelligence in research. Provo: Qualtrics, 2025. Disponível em: https://www.qualtrics.com. Acesso em: 10 nov. 2025.

RODRIGUES, Ana Paula. Inteligência artificial generativa e pesquisa qualitativa: mediações e desafios interpretativos. Revista Brasileira de Pesquisa Qualitativa, São Paulo, v. 13, n. 1, p. 45–62, 2025.

SAMPAIO, Rafael Cardoso; SABBATINI, Rodrigo; LIMONGI, Rafael. Ciência 4.0 e inteligência artificial: impactos na pesquisa científica. Revista Comunicação & Sociedade, Braga, v. 45, p. 1–20, 2024.

SAMPAIO, Rafael Cardoso et al. Inteligência artificial e metodologia científica: desafios contemporâneos. Revista Brasileira de Metodologia Científica, Brasília, v. 8, n. 2, p. 77–95, 2024.

SELWYN, Neil. Should robots replace teachers? AI and the future of education. Cambridge: Polity Press, 2019.

SHMUELI, Galit et al. Data mining for business analytics. Hoboken: Wiley, 2017.

SHMUELI, Galit et al. To explain or to predict? Statistical Science, Hayward, v. 35, n. 3, p. 359–379, 2020.

SIEMENS, George. Learning analytics: the emergence of a discipline. American Behavioral Scientist, Thousand Oaks, v. 57, n. 10, p. 1380–1400, 2013. DOI: https://doi.org/10.1177/0002764213498851

THE JAMOVI PROJECT. Jamovi (Version 2.4) [Computer software]. Sydney, 2023. Disponível em: https://www.jamovi.org. Acesso em: 12 nov. 2025.

THOMAS, Gary. Doing case study research. London: Sage, 2000.

TURING, Alan M. Computing machinery and intelligence. Mind, Oxford, v. 59, n. 236, p. 433–460, 1950. DOI: https://doi.org/10.1093/mind/LIX.236.433

WENGER, Etienne. Communities of practice: learning, meaning, and identity. Cambridge: Cambridge University Press, 1998. DOI: https://doi.org/10.1017/CBO9780511803932

ZAWACKI-RICHTER, Olaf et al. Systematic review of research on artificial intelligence applications in higher education. International Journal of Educational Technology in Higher Education, London, v. 16, n. 39, p. 1–27, 2019. DOI: https://doi.org/10.1186/s41239-019-0171-0

Publicado

2026-01-30

Cómo citar

ENTRE DADOS E SIGNIFICADOS: CONTRIBUIÇÕES EPISTEMOLÓGICAS E METODOLÓGICAS DA INTELIGÊNCIA ARTIFICIAL PARA PESQUISAS QUALITATIVAS E QUANTITATIVAS. (2026). Revista Multidisciplinar Do Nordeste Mineiro, 1(03), 1-18. https://doi.org/10.61164/c7tkek73