Digital Thermometer for Giant Unilamellar Vesicles Electroformation Devices

Autores/as

DOI:

https://doi.org/10.61164/gvsvce49

Palabras clave:

Temperature measurement, Temperature control , Biophysics , Biomembranes

Resumen

This work describes the development of a multichannel digital thermometer to validate the temperature control of giant unilamellar vesicle (GUVs) electroformation equipment. The prototype presented was built with cheap and conventional resources, such as elements and circuits from the Arduino open-source platform and negative temperature coefficient (NTC) thermistors, resulting in equipment with good precision, low production cost and easy maintenance. The device allows temperature measurement in four channels simultaneously and records the values on the computer for temporal evaluation. This equipment was essential in the process of creating a GUV electroforming device discussed elsewhere, but there are several possibilities for application in the research and development of other temperature-dependent technologies. In particular, the device allowed the development of the GUV electroformation protocol by identifying the delay process caused by positioning the thermometer outside the studied sample.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Juracy Leandro dos Santos Júnior, Federal University of Goiás

    Mestre em Engenharia de Computação, Discente do Programa de Pós-graduação em Engenharia Elétrica e de Computação da Universidade Federal de Goiás, Goiânia, Goiás, Brasil 

  • Sebastião Antônio Mendanha , Federal University of Goiás

    Doutor em Física, Instituto de Física da Universidade Federal de Goiás, Goiânia, Goiás, Brasil

  • Marcus Carrião dos Santos, Federal University of Goiás

    Doutor em Física, Instituto de Física da Universidade Federal de Goiás, Goiânia, Goiás, Brasil

  • Sílvio Leão Vieira, Federal University of Goiás

    É graduado em Eletrônica pelo Instituto Federal de Educação, Ciência e Tecnologia da Bahia, bacharel em Física pela Universidade Federal da Bahia e mestre e doutor em Física Aplicada à Medicina e Biologia pela Universidade de São Paulo (USP-Ribeirão Preto). Realizou parte do seu doutorado no Departamento de Engenharia Biomédica da Mayo Clinic College of Medicine, Rochester, Minnesota, Estados Unidos, e pós-doutorado em física aplicada no Instituto de Física da USP/SP. É professor associado do Instituto de Física e do Programa de Pós-Graduação em Engenharia Elétrica e de Computação da Universidade Federal de Goiás. Tem experiência em Física e Física Médica, com ênfase em instrumentação eletrônica e controle de sistemas e sinais biomédicos. Seus interesses de pesquisa incluem o desenvolvimento de materiais simuladores de tecidos (phantoms) para imagens médicas, elastografia por ressonância magnética (atuadores, controle e processamento de imagens) e aplicações de acústica (ultrassom) nas áreas biomédica e industrial.

Referencias

ANG, Kiam Heong; CHONG, Gregory; LI, Yun. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, [N.p.], vol. 13, no. 4, 2005. https://doi.org/10.1109/TCST.2005.847331. DOI: https://doi.org/10.1109/TCST.2005.847331

BAGATOLLI, Luis A.; NEEDHAM, David. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles. [N.p.], vol. 181, 2014. https://doi.org/10.1016/j.chemphyslip.2014.02.009. DOI: https://doi.org/10.1016/j.chemphyslip.2014.02.009

CHAKRABORTY, Sudipta; BERA, Saikat Kumar; BERA, Satish Chandra; MANDAL, Nirupama. Design of a Simple Temperature Transmitter Circuit of an Electric Heater Operated Water Bath. IEEE Sensors Journal, [N.p.], vol. 18, no. 8, pp. 3140–3151, 2018. https://doi.org/10.1109/JSEN.2018.2809465. DOI: https://doi.org/10.1109/JSEN.2018.2809465

DOS SANTOS, Juracy Leandro; MENDANHA, Sebastiao Antônio; VIEIRA, Silvio Leao; GONCALVES, Cristhiane. Portable Proportional-Integral-Derivative controlled chambers for giant unilamellar vesicles electroformation. Biomedical Physics and Engineering Express, [N.p.], vol. 5, no. 4, p. 47002, 2019. DOI: 10.1088/2057-1976/ab1a1b. Available at: http://dx.doi.org/10.1088/2057-1976/ab1a1b. DOI: https://doi.org/10.1088/2057-1976/ab1a1b

DRABIK, Dominik; DOSKOCZ, Joanna; PRZYBYŁO, Magda. Effects of electroformation protocol parameters on quality of homogeneous GUV populations. Chemistry and Physics of Lipids, [N.p.], vol. 212, pp. 88–95, 2018. https://doi.org/10.1016/j.chemphyslip.2018.01.001. DOI: https://doi.org/10.1016/j.chemphyslip.2018.01.001

EBRAHIMI-DARKHANEH, Hadi. Measurement error caused by self-heating in NTC and PTC thermistors. Analog Design Journal, [N.p.], pp. 1–8, 2019. Available at: http://www.ti.com/lit/an/slyt774/slyt774.pdf.

FRADEN, Jacob. Handbook of Modern Sensors. 5th ed. [N.p.]: Springer Cham, 2016. XIX, 758 pp. https://doi.org/10.1007/978-3-319-19303-8. DOI: https://doi.org/10.1007/978-3-319-19303-8

GHELLAB, Salah Eddine; MU, Wei; LI, Qingchuang; HAN, Xiaojun. Prediction of the size of electroformed giant unilamellar vesicle using response surface methodology. Biophysical Chemistry, [N.p.], vol. 253, no. July, p. 106217, 2019. https://doi.org/10.1016/j.bpc.2019.106217. DOI: https://doi.org/10.1016/j.bpc.2019.106217

LEVINE, William S. (ed.). The Control Handbook. [N.p.]: CRC Press, 8 Oct. 2018. DOI: 10.1201/b10382. Available at: https://www.taylorfrancis.com/books/9781420073614.

LI, Qingchuan; WANG, Xuejing; MA, Shenghua; ZHANG, Ying; HAN, Xiaojun. Electroformation of giant unilamellar vesicles in saline solution. Colloids and Surfaces B: Biointerfaces, [N.p.], vol. 147, 2016. https://doi.org/10.1016/j.colsurfb.2016.08.018. DOI: https://doi.org/10.1016/j.colsurfb.2016.08.018

LIU, Ying; LIU, Yiping; ZHANG, Wen; ZHANG, Jing. The Study of Temperature Calibration Method for NTC Thermistor. 6 Nov. 2020. 2020 IEEE 4th International Conference on Frontiers of Sensors Technologies (ICFST). [N.p.]: IEEE, 6 Nov. 2020. pp. 50–53. DOI: 10.1109/ICFST51577.2020.9294760. Available at: https://ieeexplore.ieee.org/document/9294760/. DOI: https://doi.org/10.1109/ICFST51577.2020.9294760

LIU, Ziang; HUO, Peng; YAN, Yuquan; SHI, Chenyu; KONG, Fanlin; CAO, Shiyu; CHANG, Aimin; WANG, Junhua; YAO, Jincheng. Design of a Negative Temperature Coefficient Temperature Measurement System Based on a Resistance Ratio Model. Sensors, [N.p.], vol. 24, no. 9, 2024. https://doi.org/10.3390/s24092780. DOI: https://doi.org/10.3390/s24092780

MUSTONEN, P; KINNUNEN, P K. Activation of phospholipase A2 by adriamycin in vitro. Role of drug-lipid interactions. Journal of Biological Chemistry, [N.p.], vol. 266, no. 10, pp. 6302–6307, Apr. 1991. DOI: 10.1016/S0021-9258(18)38117-1. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0021925818381171. DOI: https://doi.org/10.1016/S0021-9258(18)38117-1

OGATA, Katsuhiko. Modern Control Engineering [Paperback]. [N.p.]: [N.p.], 2009. 922 pp.

POLITANO, Timothy J.; FROUDE, Victoria E.; JING, Benxin; ZHU, Yingxi. AC-electric field dependent electroformation of giant lipid vesicles. Colloids and Surfaces B: Biointerfaces, [N.p.], vol. 79, no. 1, pp. 75–82, 2010. https://doi.org/10.1016/j.colsurfb.2010.03.032. DOI: https://doi.org/10.1016/j.colsurfb.2010.03.032

SANTOS JUNIOR, Juracy Leandro dos; VIEIRA, Sílvio Leão. Controlador de campo de corrente alternada para câmara de eletroformação de vesículas unilamelares gigantes. Research, Society and Development, [N.p.], vol. 11, no. 1, p. e44711124802, 11 Jan. 2022. DOI: 10.33448/rsd-v11i1.24802. Available at: https://rsdjournal.org/index.php/rsd/article/view/24802. DOI: https://doi.org/10.33448/rsd-v11i1.24802

SHIMANOUCHI, Toshinori; UMAKOSHI, Hiroshi; KUBOI, Ryoichi. Kinetic study on giant vesicle formation with electroformation method. Langmuir, [N.p.], vol. 25, no. 9, pp. 4835–4840, 5 May 2009. DOI: 10.1021/la8040488. Available at: https://pubs.acs.org/doi/10.1021/la8040488. DOI: https://doi.org/10.1021/la8040488

STEINHART, John S.; HART, Stanley R. Calibration curves for thermistors. Deep Sea Research and Oceanographic Abstracts, [N.p.], vol. 15, no. 4, pp. 497–503, Aug. 1968. DOI: 10.1016/0011-7471(68)90057-0. Available at: https://linkinghub.elsevier.com/retrieve/pii/0011747168900570. DOI: https://doi.org/10.1016/0011-7471(68)90057-0

TEMPERATURE SENSING WITH THERMISTORS BILLIONS OF PEOPLE EVERY DAY USE TECHNOLOGY THAT HAS. Texas Instruments, [N.p.], 2020. Available at: https://www.ti.com/lit/wp/slay054a/slay054a.pdf?ts=1717824461316.

Descargas

Publicado

2026-02-09

Cómo citar

Digital Thermometer for Giant Unilamellar Vesicles Electroformation Devices. (2026). Revista Multidisciplinar Do Nordeste Mineiro, 2(01), 1-17. https://doi.org/10.61164/gvsvce49