USE OF MICROORGANISMS TO REDUCE WATER STRESS IN SOYBEAN: A LITERATURE REVIEW

Authors

  • Fernanda Lourenço Dipple Universidade do Estado de Mato Grosso
  • Ane Mari Keller Universidade do Estado de Mato Grosso - UNEMAT
  • Marco Antonio Camillo de Carvalho Universidade do Estado de Mato Grosso - UNEMAT
  • Grace Queiroz David Peres Universidade do Estado de Mato Grosso - UNEMAT
  • Rivanildo Dallacort Universidade do Estado de Mato Grosso - UNEMAT

DOI:

https://doi.org/10.61164/pdkg3g34

Keywords:

Bactérias. Déficit hídrico. Fungos. Micorrizas.

Abstract

Soybean is a crop of great importance to the global economy, and several factors can interfere with its development and productivity. Among these factors, climate conditions and environmental adversities can drastically affect production and, consequently, the world economy. Thus, adopting sustainable strategies to mitigate the impacts of water deficit in soybean cultivation is essential for successful production, especially in countries with hot and dry climates. The use of microorganisms can reduce the effects of water deficit due to their mechanisms of action and their interactions with soil, plants, and the environment. This study aimed to investigate the use of microorganisms to alleviate water stress in soybean crops. A search was conducted on the Scopus platform using the keywords “microorganism” AND “water-deficit” AND “soybean” OR “Trichoderma” OR “Bacillus” OR “mycorrhiza,” resulting in the selection of 65 documents published in the last 10 years. Among the articles published during this period, 2020 had the highest concentration of studies, mainly in the field of agriculture. The countries that contributed the most were Iran, Brazil, and India, with Embrapa being the research institution with the greatest participation. Among microbial species, nitrogen-fixing bacteria and Bacillus showed the highest number of studies and promising results. Among fungi, the genus Trichoderma and arbuscular mycorrhizal fungi (AMF) stood out for enhancing root growth, promoting phytohormone production, and reducing the impacts of water deficit. Despite the various documented benefits, there remains a need for field research under diverse stress conditions using different strains to improve the consistency of results.

Downloads

Download data is not yet available.

References

AFROUZ, M. et al. Seed bio-priming with beneficial Trichoderma harzianum improves drought tolerance in tomato. PeerJ, v. 11, art. 15644, 2023. DOI: https://doi.org/10.7717/peerj.15644 . DOI: https://doi.org/10.7717/peerj.15644

AKBARI, S. I. et al. Bioprospecting the roles of Trichoderma in alleviating plants’ drought tolerance: Principles, mechanisms of action, and prospects. 2024. Microbiological Research. DOI: https://doi.org/10.1016/j.micres.2024.127665 DOI: https://doi.org/10.1016/j.micres.2024.127665

BARBOSA, J. Z. et al. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Applied Soil Ecology, v. 163, art. 103913, 2021. DOI: https://doi.org/10.1016/j.apsoil.2021.103913. DOI: https://doi.org/10.1016/j.apsoil.2021.103913

BATTISTI, R. et al. Soybean yield response to water deficit during vegetative and reproductive stages. Agricultural Water Management, v. 204, p. 16–25, 2018. DOI: https://doi.org/10.1016/j.agwat.2018.04.029 DOI: https://doi.org/10.1016/j.agwat.2018.04.029

BATTAGLIA, M. E.; MARTÍNEZ, S. I.; COVACEVICH, F.; CONSOLO, V. F. Trichoderma harzianum enhances root biomass production and promotes lateral root growth of soybean and common bean under drought stress. Annals of Applied Biology, v. 185, p. 36–48, 2024. DOI: https://doi.org/10.1111/aab.12909 . DOI: https://doi.org/10.1111/aab.12909

BULEGON, L. G. et al. Mitigation of drought stress effects on soybean gas exchanges induced by Azospirillum brasilense and plant regulators. Pesquisa Agropecuária Tropical, v. 49, e52807, 2019. DOI: https://doi.org/10.1590/1983-40632019v4952807. DOI: https://doi.org/10.1590/1983-40632019v4952807

BEGUM, N.; et al. Arbuscular mycorrhizal fungus Rhizophagus irregularis alleviates drought stress in soybean with overexpressing the GmSPL9d gene by promoting photosynthetic apparatus and regulating the antioxidant system. Microbiological Research, v. 273, 2023. DOI: https://doi.org/10.1016/j.micres.2023.127398 DOI: https://doi.org/10.1016/j.micres.2023.127398

BOUTASKNIT, A. et al. Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Scientific Reports 2021. 11(1):22835. DOI: https://doi.org/10.1038/s41598-021-02018-3 DOI: https://doi.org/10.1038/s41598-021-02018-3

CHIEB, M.; GACHOMO, E. W. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, v. 23, p. 407, 2023. DOI: https://doi.org/10.1186/s12870-023-04403-8 . DOI: https://doi.org/10.1186/s12870-023-04403-8

DUBEY, A. et al. Bacterial root endophytes: characterization of their competence and plant growth promotion in soybean under drought stress. International Journal of Environmental Research and Public Health, v. 18, art. 931, 2021. DOI: https://doi.org/10.3390/ijerph18030931. DOI: https://doi.org/10.3390/ijerph18030931

JÚNIOR, A. F. C. et al. Efficiency of TrichoPlus (Trichoderma asperellum) as a plant growth promoter in soybean in field conditions in the Cerrado. Research, Society and Development (RSD), v. 11, n. 5, e16111527970, 2022. DOI: https://doi.org/10.33448/rsd-v11i5.27970 . DOI: https://doi.org/10.33448/rsd-v11i5.27970

JABBOROVA, D.; et al. Co-inoculation of biochar and arbuscular mycorrhizae for improvement of soybean growth and soil enzyme activities under drought. Frontiers in Plant Science, 2022. DOI: https://doi.org/10.3389/fpls.2022.947547 . DOI: https://doi.org/10.3389/fpls.2022.947547

LOTFABADI, Z. E. et al. Arbuscular mycorrhizal fungi species improve the fatty acids profile and nutrients status of soybean cultivars grown under drought stress. Journal of Applied Microbiology, v. 132, n. 3, p. 2177–2188, 2022. DOI: https://doi.org/10.1111/jam.15326 . DOI: https://doi.org/10.1111/jam.15326

MARINKOVIĆ, J. et al. Perspectives of Bradyrhizobium and Bacillus inoculation for improvement of soybean tolerance to water deficit. Agronomy, v. 14, n. 11, art. 2692, 2024. DOI: https://doi.org/10.3390/agronomy14112692. DOI: https://doi.org/10.3390/agronomy14112692

MELO, C. L. P. et al. Water requirements and critical periods of soybean under different climatic conditions. Field Crops Research, v. 287, 108668, 2022. DOI: https://doi.org/10.1016/j.fcr.2022.108668 DOI: https://doi.org/10.1016/j.fcr.2022.108668

NADER, A. A. et al. Drought-tolerant bacteria and arbuscular mycorrhizal fungi improve soybean tolerance to drought: synthesis and experimental results. Microorganisms, 2024. v. 12, n. 6, art. 1123, 2024. DOI: https://doi.org/10.3390/microorganisms12061123 . DOI: https://doi.org/10.3390/microorganisms12061123

NGUMBI, E.; KLOEPPER, J. Bacterial-mediated drought tolerance: current and future prospects. Applied Soil Ecology, v. 105, p. 109–125, 2016. DOI: https://doi.org/10.1016/j.apsoil.2016.04.009 . DOI: https://doi.org/10.1016/j.apsoil.2016.04.009

NOMBAMBA, A. Exploring the role of endophytic fungi in the amelioration of drought stress. Plant Protection Science, 60, 2024 (3): 213–228. DOI: https://doi.org/10.17221/25/2024-PPS DOI: https://doi.org/10.17221/25/2023-PPS

NOTUNUNU, I. et al. Enhancing maize drought and heat tolerance: single vs combined plant growth promoting rhizobacterial inoculation. Front. Plant Sci., 09 December 2024. Sec. Plant Symbiotic Interactions, volume 15 – 2024. https://doi.org/10.3389/fpls.2024.1480718 DOI: https://doi.org/10.3389/fpls.2024.1480718

OLIVEIRA, T. C. et al. The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Pubmed 31;12(1):9044. 2022. https://doi.org/10.1038/s41598-022-13059-7 DOI: https://doi.org/10.1038/s41598-022-13059-7

OLIVEIRA, C. M.; ALMEIDA, N. O.; ROCHA, M. R.; REZENDE, M. H.; CARNEIRO, R. G. d. S.; ULHOA, C. J. Anatomical changes induced by isolates of Trichoderma spp. in soybean plants. PLoS ONE, v. 15, n. 11, e0242480, 2020. DOI: https://doi.org/10.1371/journal.pone.0242480 . DOI: https://doi.org/10.1371/journal.pone.0242480

ORALES-VARGAS, A. T. et al. Endophytic fungi for crops adaptation to abiotic stresses. Microorganisms, 2024. DOI: https://doi.org/10.3390/microorganisms12071357 DOI: https://doi.org/10.3390/microorganisms12071357

PORTO, D. L. et al. Arbuscular mycorrhizal fungi and water stress on the physiology and quality of Parkia platycephalic benth. Cerne, v. 30. 2024 https://doi.org/1590/01047760202330013402 DOI: https://doi.org/10.1590/01047760202330013402

RIGO¬BELO, E. C. et al. Growth promotion and modulation of the soybean metabolic profile by Trichoderma harzianum. Scientific Reports, v. 14, 71565, 2024. DOI: https://doi.org/10.1038/s41598-024-71565-2 . DOI: https://doi.org/10.1038/s41598-024-71565-2

RODRIGUES, J. M. et al. The nematophagous root endophyte Pochonia chlamydosporia enhances tolerance to drought in soybean. Springer Nature, 09 July 2024, Volume 36, pages 727–746. DOI: https://doi.org/10.1007/s40626-024-00341-4 DOI: https://doi.org/10.1007/s40626-024-00341-4

SILVA, A. F. et al. Grain filling, yield components and productivity of soybean under water restriction at reproductive stages. Agricultural Water Management, v. 239, 106263, 2020. DOI: https://doi.org/10.1016/j.agwat.2020.106263 DOI: https://doi.org/10.1016/j.agwat.2020.106263

SILVA, E. R. et al. Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean? Archives of Microbiology, v. 201, p. 325–335, 2019. DOI: https://doi.org/10.1007/s00203-018-01617-5. DOI: https://doi.org/10.1007/s00203-018-01617-5

SHETEIWY, M. S. et al. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium japonicum under drought stress. BMC Plant Biology, v. 21, art. 195, 2021. DOI: https://doi.org/10.1186/s12870-021-02949-z DOI: https://doi.org/10.1186/s12870-021-02949-z

SOLIMAN, E. R. S.; ABDELHAMEED, R. E.; METWALLY, R. A. Role of arbuscular mycorrhizal fungi in drought-resilient soybeans (Glycine max L.): unraveling the morphological, physio-biochemical traits, and expression of polyamine biosynthesis genes. Botanical Studies, v. 66, art. 9, 2025. DOI: https://doi.org/10.1186/s40529-025-00455-1 . DOI: https://doi.org/10.1186/s40529-025-00455-1

SOUZA, R. P. et al. Drought during flowering affects soybean yield through flower abortion and pod formation. Journal of Agronomy and Crop Science, v. 207, n. 5, p. 798–808, 2021. DOI: https://doi.org/10.1111/jac.12511 DOI: https://doi.org/10.1111/jac.12511

VASCONCELOS, J. C. S. et al. Bacillus-based inoculants enhance drought resilience in soybean: agronomic performance and remote sensing analysis from multi-location trials in Brazil. Front. Plant Sci., 22 July 2025, volume 16 – 2025. DOI: https://doi.org/10.3389/fpls.2025.1630127 DOI: https://doi.org/10.3389/fpls.2025.1630127

VITALE, G. S. et al. Sustainable cotton production in sicily: yield optimization through varietal selection, mycorrhizae, and efficient water management. Agronomy, 2025, 15(8), 1892; https://doi.org/10.3390/agronomy15081892 DOI: https://doi.org/10.3390/agronomy15081892

ZHANG, Z. et al. Physiological responses and growth reduction in soybean under drought stress: a controlled-environment study. Plant Physiology and Biochemistry, v. 150, p. 147–155, 2020. DOI: https://doi.org/10.1016/j.plaphy.2020.02.039 DOI: https://doi.org/10.1016/j.plaphy.2020.02.039

ZIRAK-QOTURBULAGH, M. A.; MEHRI, S.; SOLEIMANZADEH, H.; ANSARI, M. H. Co-Inoculation of Bradyrhizobium and Arbuscular Mycorrhizal Fungus Alleviates the Effects of Drought Stress in Soybean (Glycine max L.). Turkish Journal of Field Crops, v. 30, n. 1, p. 235–248, 2025. DOI: https://doi.org/10.17557/tjfc.1519684 . DOI: https://doi.org/10.17557/tjfc.1519684

Published

2025-12-05

How to Cite

USE OF MICROORGANISMS TO REDUCE WATER STRESS IN SOYBEAN: A LITERATURE REVIEW. (2025). Revista Multidisciplinar Do Nordeste Mineiro, 21(01), 1-21. https://doi.org/10.61164/pdkg3g34